Suppr超能文献

一种基于动力学模型的方法,用于从人工临床数据中识别信号转导通路中的故障组件。

A Kinetic-Model-Based Approach to Identify Malfunctioning Components in Signal Transduction Pathways from Artificial Clinical Data.

作者信息

Li Xianhua, Ribaudo Nicholas, Huang Zuyi Jacky

机构信息

Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA.

Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA ; The Center for Nonlinear Dynamics & Control (CENDAC), Villanova University, Villanova, PA 19085, USA ; Villanova Center for the Advancement of Sustainability in Engineering (VCASE), Villanova University, Villanova, PA 19085, USA.

出版信息

Biomed Res Int. 2015;2015:415083. doi: 10.1155/2015/415083. Epub 2015 Nov 29.

Abstract

Detection of malfunctioning reactions or molecules from clinical data is essential for disease treatments. In order to find an alternative to the existing oversimplistic mathematical models, a kinetic model is developed in this work to infer the malfunctioning reactions/molecules by quantifying the similarity between the clinical profile and the output profiles predicted from the model in which certain reactions/molecules malfunction. The new approach was tested in IL-6 and TNF-α/NF-κB signaling pathway, for four abnormal conditions including up/downregulation of single reaction rate constants and up/downregulation of single molecules. Since limited quantitative clinical data were available, the IL-6 ODE model was used to generate artificial clinical data for the abnormal steady-state value shown in two key molecules: nuclear STAT3 and SOCS3. Similarly, the TNF-α/NF-κB model was used to obtain the data in which abnormal oscillation dynamic was shown in the profile of NF-κB. The results show that the approach developed in this study was able to successfully identify the malfunctioning reactions and molecules from the clinical data. It was also found that this new approach was noise-robust and that it managed to reveal unique solution for the faulty components in a network.

摘要

从临床数据中检测出功能异常的反应或分子对于疾病治疗至关重要。为了找到现有过于简单的数学模型的替代方法,本研究开发了一种动力学模型,通过量化临床特征与模型预测的输出特征(其中某些反应/分子功能异常)之间的相似性,来推断功能异常的反应/分子。该新方法在IL-6和TNF-α/NF-κB信号通路中针对四种异常情况进行了测试,包括单个反应速率常数的上调/下调以及单个分子的上调/下调。由于可用的定量临床数据有限,使用IL-6常微分方程模型生成了两个关键分子(核STAT3和SOCS3)中显示异常稳态值的人工临床数据。同样,使用TNF-α/NF-κB模型获得了NF-κB图谱中显示异常振荡动态的数据。结果表明,本研究开发的方法能够成功地从临床数据中识别出功能异常的反应和分子。还发现这种新方法具有抗噪声能力,并且能够揭示网络中故障组件的独特解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fd/4678239/a6e81b058489/BMRI2015-415083.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验