Suppr超能文献

通过原位生成聚合物电解质实现具有扩展纳米区域界面的高性能柔性固态超级电容器。

High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.

作者信息

Anothumakkool Bihag, Torris A T Arun, Veeliyath Sajna, Vijayakumar Vidyanand, Badiger Manohar V, Kurungot Sreekumar

机构信息

Academy of Scientific and Innovative Research , Anusandhan Bhawan, 2 Rafi Marg, 110001 New Delhi, India.

Department of Applied Chemistry, Cochin University of Science and Technology , Cochin, 682022 Kerala, India.

出版信息

ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1233-41. doi: 10.1021/acsami.5b09677. Epub 2016 Jan 5.

Abstract

Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc.

摘要

在此,我们报道了一种高效策略,通过在超级电容器应用的电极纳米孔内原位生成聚合物凝胶电解质,可实现电极 - 电解质界面的显著增强。这种独特且高效的策略是通过在高比表面积多孔碳存在的情况下,明智地维持单体混合物的紫外线引发聚合来构思的。该方法非常简单且可扩展,甚至可以通过使用商业级电极(厚度 = 150μm,面积 = 12 cm²,质量负载 = 7.3 mg/cm²)在无封装条件下展示出原型柔性固态超级电容器。该原型器件在内部电阻大幅降低至 0.5Ω 时,电容为 130 F/g,在 32000 次循环后仍保持 84% 的高电容保持率。发现本系统明显优于使用传统聚合物电解质(PVA - H₃PO₄ 作为电解质)的类似系统,后者仅能显示 95 F/g 的电容,且该值在仅 5000 次循环后就降至近 50%。本案例中的优异性能主要归功于电极纳米孔内原位生成的聚合物电解质形成的优异界面。此外,聚合物的互穿性质还帮助该器件显示出低电子自旋共振和功率速率,最重要的是,在未密封的柔性条件下具有出色的保质期。由于电极 - 电解质界面的性质是许多电化学能量存储/转换系统(包括超级电容器)中决定性能的主要因素,因此所开发的工艺也可用于制备锂离子电池、金属空气电池、聚合物电解质膜燃料电池等器件的电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验