Graduate School of Science and Technology Kumamoto University , 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
ACS Appl Mater Interfaces. 2017 Aug 9;9(31):26151-26160. doi: 10.1021/acsami.7b04180. Epub 2017 Jul 31.
The rapid development of flexible and wearable electronics has led to an increase in the demand for flexible supercapacitors with enhanced electrochemical performance. Graphene oxide (GO) and reduced GO (rGO) exhibit several key properties required for supercapacitor components. Although solid-state rGO/GO/rGO supercapacitors with unique structures are promising, their moderate capacitance is inadequate for practical applications. Herein, we report a flexible solid-state rGO/GO/rGO supercapacitor comprising HSO-intercalated GO electrolyte/separator and pseudocapacitive rGO electrodes, which demonstrate excellent electrochemical performance. The resulting supercapacitor delivered an areal capacitance of 14.5 mF cm, which is among the highest values achieved for any rGO/GO/rGO supercapacitor. High ionic concentration and fast ion conduction in the HSO-intercalated GO electrolyte/separator and abundant CH defects, which serve as pseudocapacitive sites on the rGO electrode, were responsible for the high capacitance of this device. The rGO electrode, well separated by the HSO molecular spacer, supplied highly efficient ion transport channels, leading to excellent rate capability. The highly packed rGO electrode and high specific capacitance resulted in a high volumetric energy density (1.24 mWh cm) observed in this supercapacitor. The structure, without a clear interface between GO and rGO, provides extremely low resistance and flexibility for devices. Our device operated in air (25 °C 40%) without the use of external electrolytes, conductive additives, and binders. Furthermore, we demonstrate a simple and versatile technique for supercapacitor fabrication by combining photoreduction and electrochemical treatment. These advantages are attractive for developing novel carbon-based energy devices with high device performance and low fabrication costs.
柔性和可穿戴电子产品的快速发展导致对具有增强电化学性能的柔性超级电容器的需求增加。氧化石墨烯(GO)和还原氧化石墨烯(rGO)表现出超级电容器组件所需的几个关键特性。虽然具有独特结构的固态 rGO/GO/rGO 超级电容器很有前途,但它们适中的电容对于实际应用来说还不够。在此,我们报告了一种由 HSO 插层 GO 电解质/隔板和赝电容 rGO 电极组成的柔性固态 rGO/GO/rGO 超级电容器,该超级电容器表现出优异的电化学性能。所得到的超级电容器的面电容达到 14.5 mF cm,是任何 rGO/GO/rGO 超级电容器中最高的电容值之一。HSO 插层 GO 电解质/隔板中高离子浓度和快速离子传导以及 rGO 电极上丰富的 CH 缺陷作为赝电容位点,是该器件高电容的原因。HSO 分子间隔物很好地分离 rGO 电极,提供了高效的离子传输通道,从而具有出色的倍率性能。高度堆积的 rGO 电极和高比电容导致超级电容器具有高体积能量密度(1.24 mWh cm)。该结构中没有 GO 和 rGO 之间的明显界面,为器件提供了极低的电阻和柔韧性。我们的器件在没有使用外部电解质、导电添加剂和粘合剂的情况下在空气中(25°C 40%)运行。此外,我们通过结合光还原和电化学处理展示了一种用于超级电容器制造的简单而通用的技术。这些优势对于开发具有高器件性能和低制造成本的新型碳基能量器件具有吸引力。