Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg 86135, Germany.
Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg 86135, Germany. ; Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau MD-2028, Republic of Moldova.
Sci Adv. 2015 Nov 13;1(10):e1500916. doi: 10.1126/sciadv.1500916. eCollection 2015 Nov.
Skyrmions are whirl-like topological spin objects with high potential for future magnetic data storage. A fundamental question that is relevant to both basic research and application is whether ferroelectric (FE) polarization can be associated with skyrmions' magnetic texture and whether these objects can be manipulated by electric fields. We study the interplay between magnetism and electric polarization in the lacunar spinel GaV4S8, which undergoes a structural transition associated with orbital ordering at 44 K and reveals a complex magnetic phase diagram below 13 K, including ferromagnetic, cycloidal, and Néel-type skyrmion lattice (SkL) phases. We found that the orbitally ordered phase of GaV4S8 is FE with a sizable polarization of ~1 μC/cm(2). Moreover, we observed spin-driven excess polarizations in all magnetic phases; hence, GaV4S8 hosts three different multiferroic phases with coexisting polar and magnetic order. These include the SkL phase, where we predict a strong spatial modulation of FE polarization close to the skyrmion cores. By taking into account the crystal symmetry and spin patterns of the magnetically ordered phases, we identify exchange striction as the main microscopic mechanism behind the spin-driven FE polarization in each multiferroic phase. Because GaV4S8 is unique among known SkL host materials owing to its polar crystal structure and the observed strong magnetoelectric effect, this study is an important step toward the nondissipative electric field control of skyrmions.
斯格明子是具有高潜力的未来磁数据存储的旋涡状拓扑自旋体。一个与基础研究和应用都相关的基本问题是铁电(FE)极化是否可以与斯格明子的磁织构相关联,以及这些物体是否可以通过电场来操纵。我们研究了在具有空洞的尖晶石 GaV4S8 中磁与电极化的相互作用,该材料在 44 K 处经历与轨道有序相关的结构转变,并在 13 K 以下揭示了复杂的磁相图,包括铁磁、旋轨和奈尔型斯格明子晶格(SkL)相。我们发现 GaV4S8 的轨道有序相具有 FE,极化约为 1 μC/cm(2)。此外,我们在所有磁性相中都观察到了自旋驱动的过剩极化;因此,GaV4S8 中存在三种不同的共存极性和磁性有序的多铁相。这些相包括 SkL 相,我们预测在斯格明子核心附近存在 FE 极化的强空间调制。通过考虑磁有序相的晶体对称性和自旋模式,我们确定交换紧缩是每个多铁相中自旋驱动 FE 极化的主要微观机制。由于 GaV4S8 因其极性晶体结构和观察到的强磁电效应而在已知的 SkL 主体材料中独一无二,因此这项研究是朝着非耗散电场控制斯格明子迈出的重要一步。