Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. ; Department of Physics, University of California, Santa Barbara, CA 93106, USA.
Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. ; IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA.
Sci Adv. 2015 Nov 20;1(10):e1501015. doi: 10.1126/sciadv.1501015. eCollection 2015 Nov.
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
纠缠是量子计算机、量子通信网络和高精度传感器的关键资源。宏观自旋集合在这些有前途的技术的量子算法发展中一直具有重要意义,并且今天仍然是实现这些技术的强有力候选者。这种优势源于它们长寿命的量子相干性、强信号以及能够集体耦合到外部自由度的能力。尽管如此,制备真正纠缠的自旋态的集合仍然需要高磁场和低温或光化学反应。我们证明了在室温条件下可以在固态自旋集合中实现纠缠。我们使用由电子-核自旋对组成的混合寄存器,这些自旋对位于商用 SiC 晶片的色心缺陷处。我们在 40μm3 的体积中光学初始化了 103 个相同的寄存器(保真度为 [Formula: see text]),并将它们确定性地制备到最大纠缠的贝尔态(保真度为 0.88±0.07)。为了验证纠缠,我们开发了一种特定于寄存器的量子态层析协议。在室温条件下,宏观固态自旋集合的纠缠代表了迈向实用量子技术的重要一步。