Suppr超能文献

固态自旋体系中的纠缠。

Entanglement in a solid-state spin ensemble.

机构信息

Department of Materials, Oxford University, Oxford OX1 3PH, UK.

出版信息

Nature. 2011 Feb 3;470(7332):69-72. doi: 10.1038/nature09696. Epub 2011 Jan 19.

Abstract

Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.

摘要

纠缠是典型的量子现象。它是大多数新兴量子技术的必要组成部分,包括量子中继器、量子信息处理和最强形式的量子密码学。自旋集合,如用于液态核磁共振的自旋集合,对于量子控制方法的发展非常重要。然而,这些演示不包含纠缠,最终构成量子算法的经典模拟。在这里,我们报告了在同位素工程的磷掺杂硅中电子和核自旋集合之间按需产生纠缠。我们结合了高场(3.4T)、低温(2.9K)电子自旋共振和(31)P 核自旋的超极化,以获得足够纯度的初始状态,从而产生非经典的、不可分离的状态。该状态使用基于几何相位门的密度矩阵层析成像进行了验证,在该场和温度下,其保真度相对于理想状态为 98%。纠缠操作以高保真度同时在 10^10 个自旋对上进行;这满足了基于硅的量子信息处理器的基本要求之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验