Suppr超能文献

微小RNA在人类尸检肌萎缩侧索硬化症脊髓中的表达为疾病机制提供了见解。

Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms.

作者信息

Figueroa-Romero Claudia, Hur Junguk, Lunn J Simon, Paez-Colasante Ximena, Bender Diane E, Yung Raymond, Sakowski Stacey A, Feldman Eva L

机构信息

Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA.

Division of Geriatrics and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Mol Cell Neurosci. 2016 Mar;71:34-45. doi: 10.1016/j.mcn.2015.12.008. Epub 2015 Dec 17.

Abstract

Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis.

摘要

肌萎缩侧索硬化症是一种迟发性的终末期神经退行性疾病。大多数病例为散发性,病因不明,只有少数病例与遗传有关。最近的证据表明,转录后调控和表观遗传机制,如微小RNA,是神经退行性疾病发病和进展的基础;因此,微小RNA表达的改变可能导致关键基因和生物途径的失调,从而促进散发性肌萎缩侧索硬化症的发展。通过对死后人类脊髓组织进行系统生物学分析,我们鉴定出失调的成熟微小RNA及其潜在靶点,这些靶点先前与肌萎缩侧索硬化症发病机制相关的功能过程和途径有关。此外,我们报告了成熟微小RNA的整体减少、微小RNA加工的改变,并支持核苷酸结合蛋白TAR DNA结合蛋白43在调节散发性肌萎缩侧索硬化症相关微小RNA中的作用,从而为散发性肌萎缩侧索硬化症提供了一种潜在的潜在机制。

相似文献

1
Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms.
Mol Cell Neurosci. 2016 Mar;71:34-45. doi: 10.1016/j.mcn.2015.12.008. Epub 2015 Dec 17.
3
MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis.
Mol Neurobiol. 2018 Mar;55(3):2617-2630. doi: 10.1007/s12035-017-0537-z. Epub 2017 Apr 18.
5
Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis.
Neuropathol Appl Neurobiol. 2020 Aug;46(5):441-457. doi: 10.1111/nan.12597. Epub 2020 Jan 24.
6
MicroRNA-5572 Is a Novel MicroRNA-Regulating in Sporadic Amyotrophic Lateral Sclerosis.
Int J Mol Sci. 2020 Jun 24;21(12):4482. doi: 10.3390/ijms21124482.
8
RNA and Protein Interactors with TDP-43 in Human Spinal-Cord Lysates in Amyotrophic Lateral Sclerosis.
J Proteome Res. 2018 Apr 6;17(4):1712-1729. doi: 10.1021/acs.jproteome.8b00126. Epub 2018 Mar 22.
10

引用本文的文献

2
Decoding Neuromuscular Disorders: The Complex Role of Genetic and Epigenetic Regulators.
Genes (Basel). 2025 May 23;16(6):622. doi: 10.3390/genes16060622.
3
Targeting TDP-43 Proteinopathy in hiPSC-Derived Mutated hNPCs with Mitoxantrone Drugs and miRNAs.
Pharmaceutics. 2025 Mar 25;17(4):410. doi: 10.3390/pharmaceutics17040410.
4
Staufen2 dysregulation in neurodegenerative disease.
J Biol Chem. 2025 Mar;301(3):108316. doi: 10.1016/j.jbc.2025.108316. Epub 2025 Feb 13.
5
Exploring dysregulated miRNAs in ALS: implications for disease pathogenesis and early diagnosis.
Neurol Sci. 2025 Apr;46(4):1661-1686. doi: 10.1007/s10072-024-07840-x. Epub 2024 Nov 21.
6
The Role of miR-137 in Neurodegenerative Disorders.
Int J Mol Sci. 2024 Jun 30;25(13):7229. doi: 10.3390/ijms25137229.
10
Cerebellar Micro-RNA Profile in a Mouse Model of Spinocerebellar Ataxia Type 2.
Neurol Genet. 2024 Mar 28;10(2):e200144. doi: 10.1212/NXG.0000000000200144. eCollection 2024 Apr.

本文引用的文献

1
Familial Amyotrophic Lateral Sclerosis.
Neurol Clin. 2015 Nov;33(4):807-30. doi: 10.1016/j.ncl.2015.07.001. Epub 2015 Sep 8.
2
Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS.
EMBO J. 2015 Nov 3;34(21):2633-51. doi: 10.15252/embj.201490493. Epub 2015 Sep 1.
3
Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era.
Nat Rev Neurol. 2015 May;11(5):266-79. doi: 10.1038/nrneurol.2015.57. Epub 2015 Apr 21.
4
Update on non-canonical microRNAs.
Biomol Concepts. 2014 Aug;5(4):275-87. doi: 10.1515/bmc-2014-0012.
5
Towards understanding RNA-mediated neurological disorders.
J Genet Genomics. 2014 Sep 20;41(9):473-84. doi: 10.1016/j.jgg.2014.08.003. Epub 2014 Aug 23.
6
Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers.
Brain. 2014 Nov;137(Pt 11):2938-50. doi: 10.1093/brain/awu249. Epub 2014 Sep 5.
7
Expression, regulation and function of microRNAs in multiple sclerosis.
Int J Med Sci. 2014 Jun 2;11(8):810-8. doi: 10.7150/ijms.8647. eCollection 2014.
8
Glial cells in amyotrophic lateral sclerosis.
Exp Neurol. 2014 Dec;262 Pt B:111-20. doi: 10.1016/j.expneurol.2014.05.015. Epub 2014 May 22.
10
The RNA-binding protein TDP-43 selectively disrupts microRNA-1/206 incorporation into the RNA-induced silencing complex.
J Biol Chem. 2014 May 16;289(20):14263-71. doi: 10.1074/jbc.M114.561902. Epub 2014 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验