Suppr超能文献

Curvature-Dependent Excitation Propagation in Cultured Cardiac Tissue.

作者信息

Kadota S, Kay M W, Magome N, Agladze K

机构信息

Institute for Integrated Cell-Material Sciences, Kyoto University, 60638501 Kyoto, Japan.

Department of Electrical and Computer Engineering, George Washington University, 20052 Washington DC, USA.

出版信息

JETP Lett. 2012 Feb;94(11):824-830. doi: 10.1134/S0021364011230044. Epub 2012 Feb 4.

Abstract

The geometry of excitation wave front may play an important role on the propagation block and spiral wave formation. The wave front which is bent over the critical value due to interaction with the obstacles may partially cease to propagate and appearing wave breaks evolve into rotating waves or reentry. This scenario may explain how reentry spontaneously originates in a heart. We studied highly curved excitation wave fronts in the cardiac tissue culture and found that in the conditions of normal, non-inhibited excitability the curvature effects do not play essential role in the propagation. Neither narrow isthmuses nor sharp corners of the obstacles, being classical objects for production of extremely curved wave front, affect non-inhibited wave propagation. The curvature-related phenomena of the propagation block and wave detachment from the obstacle boundary were observed only after partial suppression of the sodium channels with Lidocaine. Computer simulations confirmed the experimental observations. The explanation of the observed phenomena refers to the fact that the heart tissue is made of finite size cells so that curvature radii smaller than the cardiomyocyte size loses sense, and in non-inhibited tissue the single cell is capable to transmit excitation to its neighbors.

摘要

相似文献

1
Curvature-Dependent Excitation Propagation in Cultured Cardiac Tissue.
JETP Lett. 2012 Feb;94(11):824-830. doi: 10.1134/S0021364011230044. Epub 2012 Feb 4.
3
Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.
Circ Res. 1994 Dec;75(6):1014-28. doi: 10.1161/01.res.75.6.1014.
4
Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue.
Am J Physiol Heart Circ Physiol. 2014 Oct 1;307(7):H1024-35. doi: 10.1152/ajpheart.00593.2013. Epub 2014 Aug 8.
5
Role of wavefront curvature in propagation of cardiac impulse.
Cardiovasc Res. 1997 Feb;33(2):258-71. doi: 10.1016/s0008-6363(96)00216-7.
7
Spiral wave attachment to millimeter-sized obstacles.
Circulation. 2006 Nov 14;114(20):2113-21. doi: 10.1161/CIRCULATIONAHA.105.598631. Epub 2006 Nov 6.
8
Wave front-obstacle interactions in cardiac tissue: a computational study.
Ann Biomed Eng. 2001 Jan;29(1):35-46. doi: 10.1114/1.1332083.
10
Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
J Cardiovasc Electrophysiol. 1994 Jun;5(6):496-509. doi: 10.1111/j.1540-8167.1994.tb01290.x.

引用本文的文献

1
Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies.
Biomimetics (Basel). 2023 Oct 14;8(6):487. doi: 10.3390/biomimetics8060487.
2
Commentary: Atrial Rotor Dynamics Under Complex Fractional Order Diffusion.
Front Physiol. 2018 Oct 4;9:1386. doi: 10.3389/fphys.2018.01386. eCollection 2018.

本文引用的文献

1
Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):066216. doi: 10.1103/PhysRevE.78.066216. Epub 2008 Dec 24.
2
Interaction between spiral and paced waves in cardiac tissue.
Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H503-13. doi: 10.1152/ajpheart.01060.2006. Epub 2007 Mar 23.
3
Mechanisms of destabilization and early termination of spiral wave reentry in the ventricle by a class III antiarrhythmic agent, nifekalant.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H539-48. doi: 10.1152/ajpheart.00640.2006. Epub 2006 Aug 25.
5
Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media.
IEEE Trans Biomed Eng. 2005 Jan;52(1):50-63. doi: 10.1109/TBME.2004.839798.
6
Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
Physiol Rev. 2004 Apr;84(2):431-88. doi: 10.1152/physrev.00025.2003.
7
Drug-induced prolongation of the QT interval.
N Engl J Med. 2004 Mar 4;350(10):1013-22. doi: 10.1056/NEJMra032426.
8
Functional reentry in cultured monolayers of neonatal rat cardiac cells.
Am J Physiol Heart Circ Physiol. 2003 Jul;285(1):H449-56. doi: 10.1152/ajpheart.00896.2002. Epub 2003 Mar 6.
9
Role of wavefront curvature in propagation of cardiac impulse.
Cardiovasc Res. 1997 Feb;33(2):258-71. doi: 10.1016/s0008-6363(96)00216-7.
10
Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle.
Biophys J. 1996 Mar;70(3):1105-11. doi: 10.1016/S0006-3495(96)79691-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验