Qiu Shen, Wu Xianyong, Xiao Lifen, Ai Xinping, Yang Hanxi, Cao Yuliang
College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University , Wuhan 430072, China.
College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China.
ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1337-43. doi: 10.1021/acsami.5b10182. Epub 2016 Jan 6.
Antimony/carbon (Sb@C) microspheres are initially synthesized via a facile self-catalyzing solvothermal method, and their applicability as anode materials for sodium-ion batteries is investigated. The structural and morphological characterizations reveal that Sb@C microspheres are composed of Sb nanoparticles (∼20 nm) homogeneously encapsulated in the C matrix. The self-catalyzing solvothermal mechanism is verified through comparative experiments by using different raw materials. The as-prepared Sb@C microspheres exhibit superior sodium storage properties, demonstrating a reversible capacity of 640 mAh g(-1), excellent rate performance, and an extended cycling stability of 92.3% capacity retention over 300 cycles, making them promising anode materials for sodium-ion batteries.
锑/碳(Sb@C)微球最初是通过一种简便的自催化溶剂热法合成的,并研究了其作为钠离子电池负极材料的适用性。结构和形态表征表明,Sb@C微球由均匀包裹在碳基质中的锑纳米颗粒(约20纳米)组成。通过使用不同原料的对比实验验证了自催化溶剂热机理。所制备的Sb@C微球表现出优异的储钠性能,可逆容量为640 mAh g(-1),倍率性能优异,在300次循环中容量保持率达92.3%,具有良好的循环稳定性,使其成为有前景的钠离子电池负极材料。