Suppr超能文献

通过简便的自催化溶剂热法合成的碳微球包裹锑纳米晶体用于高性能钠离子电池阳极

Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes.

作者信息

Qiu Shen, Wu Xianyong, Xiao Lifen, Ai Xinping, Yang Hanxi, Cao Yuliang

机构信息

College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University , Wuhan 430072, China.

College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1337-43. doi: 10.1021/acsami.5b10182. Epub 2016 Jan 6.

Abstract

Antimony/carbon (Sb@C) microspheres are initially synthesized via a facile self-catalyzing solvothermal method, and their applicability as anode materials for sodium-ion batteries is investigated. The structural and morphological characterizations reveal that Sb@C microspheres are composed of Sb nanoparticles (∼20 nm) homogeneously encapsulated in the C matrix. The self-catalyzing solvothermal mechanism is verified through comparative experiments by using different raw materials. The as-prepared Sb@C microspheres exhibit superior sodium storage properties, demonstrating a reversible capacity of 640 mAh g(-1), excellent rate performance, and an extended cycling stability of 92.3% capacity retention over 300 cycles, making them promising anode materials for sodium-ion batteries.

摘要

锑/碳(Sb@C)微球最初是通过一种简便的自催化溶剂热法合成的,并研究了其作为钠离子电池负极材料的适用性。结构和形态表征表明,Sb@C微球由均匀包裹在碳基质中的锑纳米颗粒(约20纳米)组成。通过使用不同原料的对比实验验证了自催化溶剂热机理。所制备的Sb@C微球表现出优异的储钠性能,可逆容量为640 mAh g(-1),倍率性能优异,在300次循环中容量保持率达92.3%,具有良好的循环稳定性,使其成为有前景的钠离子电池负极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验