Suppr超能文献

bSUM:一种珠子支持的单层膜系统,有助于膜蛋白单向插入巨型囊泡。

bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles.

作者信息

Zheng Hui, Lee Sungsoo, Llaguno Marc C, Jiang Qiu-Xing

机构信息

Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390.

Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Yale University, New Haven, CT 06510.

出版信息

J Gen Physiol. 2016 Jan;147(1):77-93. doi: 10.1085/jgp.201511448.

Abstract

Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo-electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2-20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2-0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid-protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.

摘要

融合或巨型囊泡、平面脂质双层、液滴膜系统和平面膜支撑体系已被开发用于整合膜蛋白,以便对这类蛋白进行电学和生物物理分析或研究双层膜的性质。然而,将包括离子通道在内的膜蛋白整合到重构膜系统中仍然存在困难,这些系统需要能够轻松控制操作尺寸、膜蛋白的整合方向以及膜的脂质组成。在此,我们使用一种新开发的化学工程方法,报道了一种珠子支撑的单层膜(bSUM)系统,该系统能够很好地控制膜尺寸、蛋白方向和脂质组成。我们的新系统使用特定配体促进膜蛋白单向整合到脂质双层中。冷冻电子显微镜成像证明了bSUM的单层性质。对不同直径的bSUM中电压门控离子通道的电记录证明了新系统的多功能性。以KvAP作为模型系统,我们表明与其他体外膜系统相比,bSUM具有以下优点:(a)大部分通道以可控方式定向;(b)通道介导脂质双层的形成;(c)每个珠子上只有一层双层膜;(d)脂质组成可以控制,bSUM大小在0.2 - 20 µm范围内也可通过实验控制;(e)通道活性可以使用平面电极通过膜片钳记录;(f)平面电极上bSUM的电压钳制速度(0.2 - 0.5毫秒)很快,使其适合研究具有快速门控动力学的离子通道。我们的观察结果表明,化学工程改造的bSUM为研究不同脂质组成膜中的脂 - 蛋白相互作用提供了一个新平台,并且可能对其他应用有用,如靶向递送和单分子成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21af/4692488/1666f87d5ffd/JGP_201511448R_Fig1.jpg

相似文献

2
Supported membrane nanodevices.
J Nanosci Nanotechnol. 2004 Jan-Feb;4(1-2):1-22. doi: 10.1166/jnn.2004.226.
3
Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip.
Biophys J. 2001 Oct;81(4):2389-94. doi: 10.1016/S0006-3495(01)75885-7.
4
Asymmetric droplet interface bilayers.
J Am Chem Soc. 2008 May 7;130(18):5878-9. doi: 10.1021/ja802089s. Epub 2008 Mar 26.
7
Reconstitution and Electrophysiological Characterization of Ion Channels in Lipid Bilayers.
Curr Protoc Pharmacol. 2018 Jun;81(1):e37. doi: 10.1002/cpph.37. Epub 2018 May 4.
8
Roles of bilayer material properties in function and distribution of membrane proteins.
Annu Rev Biophys Biomol Struct. 2006;35:177-98. doi: 10.1146/annurev.biophys.35.040405.102022.
9
Model membrane platforms to study protein-membrane interactions.
Mol Membr Biol. 2012 Aug;29(5):144-54. doi: 10.3109/09687688.2012.700490. Epub 2012 Jul 26.
10
DNA nanostructures interacting with lipid bilayer membranes.
Acc Chem Res. 2014 Jun 17;47(6):1807-15. doi: 10.1021/ar500051r. Epub 2014 May 14.

引用本文的文献

1
Modulation of Kv Channel Gating by Light-Controlled Membrane Thickness.
Biomolecules. 2025 May 21;15(5):744. doi: 10.3390/biom15050744.
2
In vitro reconstitution of transition metal transporters.
J Biol Chem. 2024 Aug;300(8):107589. doi: 10.1016/j.jbc.2024.107589. Epub 2024 Jul 19.
3
Formation of Giant Unilamellar Vesicles Assisted by Fluorinated Nanoparticles.
Adv Sci (Weinh). 2023 Dec;10(34):e2302461. doi: 10.1002/advs.202302461. Epub 2023 Oct 9.
4
Amphiphilic Membrane Environments Regulate Enzymatic Behaviors of Outer Membrane Protease.
ACS Bio Med Chem Au. 2021 Dec 14;2(1):73-83. doi: 10.1021/acsbiomedchemau.1c00027. eCollection 2022 Feb 16.
5
Cholesterol-Dependent Gating Effects on Ion Channels.
Adv Exp Med Biol. 2019;1115:167-190. doi: 10.1007/978-3-030-04278-3_8.
6
Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs.
Med Chem. 2019;15(5):443-458. doi: 10.2174/1573406415666181219101613.
7
Secretory granule protein chromogranin B (CHGB) forms an anion channel in membranes.
Life Sci Alliance. 2018 Sep 24;1(5):e201800139. doi: 10.26508/lsa.201800139. eCollection 2018 Oct.

本文引用的文献

2
Phosphatidic acid modulation of Kv channel voltage sensor function.
Elife. 2014 Oct 6;3:e04366. doi: 10.7554/eLife.04366.
3
PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating.
Front Physiol. 2014 May 27;5:195. doi: 10.3389/fphys.2014.00195. eCollection 2014.
4
A long QT mutation substitutes cholesterol for phosphatidylinositol-4,5-bisphosphate in KCNQ1 channel regulation.
PLoS One. 2014 Mar 28;9(3):e93255. doi: 10.1371/journal.pone.0093255. eCollection 2014.
5
Imaging lipids with secondary ion mass spectrometry.
Biochim Biophys Acta. 2014 Aug;1841(8):1108-19. doi: 10.1016/j.bbalip.2014.03.003. Epub 2014 Mar 18.
6
Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3614-9. doi: 10.1073/pnas.1320768111. Epub 2014 Feb 18.
7
Chemically functionalized carbon films for single molecule imaging.
J Struct Biol. 2014 Mar;185(3):405-17. doi: 10.1016/j.jsb.2014.01.006. Epub 2014 Jan 21.
9
Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):13180-5. doi: 10.1073/pnas.1305167110. Epub 2013 Jul 16.
10
Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.
Channels (Austin). 2013 Jul-Aug;7(4):275-87. doi: 10.4161/chan.25122. Epub 2013 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验