Hirooka Kazutake, Kodoi Yusuke, Satomura Takenori, Fujita Yasutaro
Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan.
J Bacteriol. 2015 Dec 28;198(5):830-45. doi: 10.1128/JB.00856-15.
The Bacillus subtilis rhaEWRBMA (formerly yuxG-yulBCDE) operon consists of four genes encoding enzymes for l-rhamnose catabolism and the rhaR gene encoding a DeoR-type transcriptional regulator. DNase I footprinting analysis showed that the RhaR protein specifically binds to the regulatory region upstream of the rhaEW gene, in which two imperfect direct repeats are included. Gel retardation analysis revealed that the direct repeat farther upstream is essential for the high-affinity binding of RhaR and that the DNA binding of RhaR was effectively inhibited by L-rhamnulose-1-phosphate, an intermediate of L-rhamnose catabolism. Moreover, it was demonstrated that the CcpA/P-Ser-HPr complex, primarily governing the carbon catabolite control in B. subtilis, binds to the catabolite-responsive element, which overlaps the RhaR binding site. In vivo analysis of the rhaEW promoter-lacZ fusion in the background of ccpA deletion showed that the L-rhamnose-responsive induction of the rhaEW promoter was negated by the disruption of rhaA or rhaB but not rhaEW or rhaM, whereas rhaR disruption resulted in constitutive rhaEW promoter activity. These in vitro and in vivo results clearly indicate that RhaR represses the operon by binding to the operator site, which is detached by L-rhamnulose-1-phosphate formed from L-rhamnose through a sequence of isomerization by RhaA and phosphorylation by RhaB, leading to the derepression of the operon. In addition, the lacZ reporter analysis using the strains with or without the ccpA deletion under the background of rhaR disruption supported the involvement of CcpA in the carbon catabolite repression of the operon.
Since L-rhamnose is a component of various plant-derived compounds, it is a potential carbon source for plant-associating bacteria. Moreover, it is suggested that L-rhamnose catabolism plays a significant role in some bacteria-plant interactions, e.g., invasion of plant pathogens and nodulation of rhizobia. Despite the physiological importance of L-rhamnose catabolism for various bacterial species, the transcriptional regulation of the relevant genes has been poorly understood, except for the regulatory system of Escherichia coli. In this study, we show that, in Bacillus subtilis, one of the plant growth-promoting rhizobacteria, the rhaEWRBMA operon for L-rhamnose catabolism is controlled by RhaR and CcpA. This regulatory system can be another standard model for better understanding the regulatory mechanisms of L-rhamnose catabolism in other bacterial species.
枯草芽孢杆菌的rhaEWRBMA(以前称为yuxG-yulBCDE)操纵子由四个编码L-鼠李糖分解代谢酶的基因和一个编码DeoR型转录调节因子的rhaR基因组成。DNase I足迹分析表明,RhaR蛋白特异性结合rhaEW基因上游的调控区域,该区域包含两个不完全的直接重复序列。凝胶阻滞分析显示,更上游的直接重复序列对于RhaR的高亲和力结合至关重要,并且RhaR的DNA结合被L-鼠李糖分解代谢的中间产物L-鼠李糖-1-磷酸有效抑制。此外,还证明了主要控制枯草芽孢杆菌中碳分解代谢物控制的CcpA/P-Ser-HPr复合物与分解代谢物反应元件结合,该元件与RhaR结合位点重叠。在ccpA缺失背景下对rhaEW启动子-lacZ融合体进行的体内分析表明,rhaA或rhaB的破坏会消除rhaEW启动子对L-鼠李糖的响应诱导,而rhaEW或rhaM的破坏则不会,而rhaR的破坏会导致rhaEW启动子组成型活性。这些体外和体内结果清楚地表明,RhaR通过与操纵基因位点结合来抑制操纵子,该位点被L-鼠李糖通过RhaA的一系列异构化和RhaB的磷酸化形成的L-鼠李糖-1-磷酸分离,从而导致操纵子的去阻遏。此外,在rhaR破坏背景下使用有或没有ccpA缺失的菌株进行的lacZ报告基因分析支持了CcpA参与操纵子的碳分解代谢物阻遏。
由于L-鼠李糖是各种植物衍生化合物的成分,它是与植物相关细菌的潜在碳源。此外,有人提出L-鼠李糖分解代谢在某些细菌与植物的相互作用中起重要作用,例如植物病原体的入侵和根瘤菌的结瘤。尽管L-鼠李糖分解代谢对各种细菌物种具有生理重要性,但除了大肠杆菌的调节系统外,相关基因的转录调节一直知之甚少。在这项研究中,我们表明,在植物促生根际细菌之一的枯草芽孢杆菌中,用于L-鼠李糖分解代谢的rhaEWRBMA操纵子受RhaR和CcpA控制。这种调节系统可以成为另一个标准模型,以更好地理解其他细菌物种中L-鼠李糖分解代谢的调节机制。