Suppr超能文献

头孢磺啶激发的对结核分枝杆菌毒性磷酸酶mPTPB的强效和选择性抑制剂

Cefsulodin Inspired Potent and Selective Inhibitors of mPTPB, a Virulent Phosphatase from Mycobacterium tuberculosis.

作者信息

He Rongjun, Yu Zhi-Hong, Zhang Ruo-Yu, Wu Li, Gunawan Andrea M, Zhang Zhong-Yin

机构信息

Department of Biochemistry and Molecular Biology and Chemical Genomics Core Facility, Indiana University School of Medicine , 635 Barnhill Drive, Indianapolis, Indiana 46202, United States.

出版信息

ACS Med Chem Lett. 2015 Nov 3;6(12):1231-5. doi: 10.1021/acsmedchemlett.5b00373. eCollection 2015 Dec 10.

Abstract

mPTPB is a virulent phosphatase from Mycobacterium tuberculosis and a promising therapeutic target for tuberculosis. To facilitate mPTPB-based drug discovery, we identified α-sulfophenylacetic amide (SPAA) from cefsulodin, a third generation β-lactam cephalosporin antibiotic, as a novel pTyr pharmacophore for mPTPB. Structure-guided and fragment-based optimization of SPAA led to the most potent and selective mPTPB inhibitor 9, with a K i of 7.9 nM and more than 10,000-fold preference for mPTPB over a large panel of 25 phosphatases. Compound 9 also exhibited excellent cellular activity and specificity in blocking mPTPB function in macrophage. Given its novel structure, modest molecular mass, and extremely high ligand efficiency (0.46), compound 9 represents an outstanding lead compound for anti-TB drug discovery targeting mPTPB.

摘要

mPTPB是一种来自结核分枝杆菌的毒性磷酸酶,是结核病一个很有前景的治疗靶点。为了促进基于mPTPB的药物发现,我们从第三代β-内酰胺类头孢菌素抗生素头孢磺啶中鉴定出α-磺基苯乙酰胺(SPAA),作为mPTPB的一种新型磷酸化酪氨酸药效团。基于结构和片段的SPAA优化产生了最有效和最具选择性的mPTPB抑制剂9,其抑制常数(K i)为7.9 nM,对mPTPB的选择性比对25种磷酸酶组成的大样本库中的其他磷酸酶高10000倍以上。化合物9在巨噬细胞中阻断mPTPB功能时还表现出优异的细胞活性和特异性。鉴于其新颖的结构、适中的分子量和极高的配体效率(0.46),化合物9是针对mPTPB的抗结核药物发现的一种优秀先导化合物。

相似文献

1
Cefsulodin Inspired Potent and Selective Inhibitors of mPTPB, a Virulent Phosphatase from Mycobacterium tuberculosis.
ACS Med Chem Lett. 2015 Nov 3;6(12):1231-5. doi: 10.1021/acsmedchemlett.5b00373. eCollection 2015 Dec 10.
3
Double click reaction for the acquisition of a highly potent and selective mPTPB inhibitor.
ChemMedChem. 2010 Dec 3;5(12):2051-6. doi: 10.1002/cmdc.201000348.
5
Highly Potent and Selective -Aryl Oxamic Acid-Based Inhibitors for Protein Tyrosine Phosphatase B.
J Med Chem. 2020 Sep 10;63(17):9212-9227. doi: 10.1021/acs.jmedchem.0c00302. Epub 2020 Aug 21.
6
Identification of fusarielin M as a novel inhibitor of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB).
Bioorg Chem. 2021 Jan;106:104495. doi: 10.1016/j.bioorg.2020.104495. Epub 2020 Nov 24.
8
Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4573-8. doi: 10.1073/pnas.0909133107. Epub 2010 Feb 18.

引用本文的文献

1
Identification of intracellular survival-related virulence factors via CRISPR-based eukaryotic-like secretory protein mutant library screen.
Microbiol Spectr. 2025 Aug 5;13(8):e0076725. doi: 10.1128/spectrum.00767-25. Epub 2025 Jun 12.
2
Functional interrogation and therapeutic targeting of protein tyrosine phosphatases.
Biochem Soc Trans. 2021 Aug 27;49(4):1723-1734. doi: 10.1042/BST20201308.
3
Therapeutic Targeting of Protein Tyrosine Phosphatases from .
Microorganisms. 2020 Dec 23;9(1):14. doi: 10.3390/microorganisms9010014.
4
Highly Potent and Selective -Aryl Oxamic Acid-Based Inhibitors for Protein Tyrosine Phosphatase B.
J Med Chem. 2020 Sep 10;63(17):9212-9227. doi: 10.1021/acs.jmedchem.0c00302. Epub 2020 Aug 21.
5
Phosphotyrosine isosteres: past, present and future.
Org Biomol Chem. 2020 Jan 28;18(4):583-605. doi: 10.1039/c9ob01998g. Epub 2019 Nov 28.
6
MptpB Promotes Mycobacteria Survival by Inhibiting the Expression of Inflammatory Mediators and Cell Apoptosis in Macrophages.
Front Cell Infect Microbiol. 2018 May 25;8:171. doi: 10.3389/fcimb.2018.00171. eCollection 2018.
7
Covalent inhibition of protein tyrosine phosphatases.
Mol Biosyst. 2017 Jun 27;13(7):1257-1279. doi: 10.1039/c7mb00151g.
8
Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
Acc Chem Res. 2017 Jan 17;50(1):122-129. doi: 10.1021/acs.accounts.6b00537. Epub 2016 Dec 15.

本文引用的文献

1
Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors.
ACS Med Chem Lett. 2015 Jun 8;6(7):782-6. doi: 10.1021/acsmedchemlett.5b00118. eCollection 2015 Jul 9.
2
Ligand efficiency as a guide in fragment hit selection and optimization.
Drug Discov Today Technol. 2010 Autumn;7(3):e147-202. doi: 10.1016/j.ddtec.2010.11.003.
5
Small molecule tools for functional interrogation of protein tyrosine phosphatases.
FEBS J. 2013 Jan;280(2):731-50. doi: 10.1111/j.1742-4658.2012.08718.x. Epub 2012 Aug 16.
6
High-resolution dose-response screening using droplet-based microfluidics.
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):378-83. doi: 10.1073/pnas.1113324109. Epub 2011 Dec 27.
8
Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.
Lancet. 2010 May 22;375(9728):1830-43. doi: 10.1016/S0140-6736(10)60410-2.
9
Scale-up of services and research priorities for diagnosis, management, and control of tuberculosis: a call to action.
Lancet. 2010 Jun 19;375(9732):2179-91. doi: 10.1016/S0140-6736(10)60554-5. Epub 2010 May 18.
10
The HIV-associated tuberculosis epidemic--when will we act?
Lancet. 2010 May 29;375(9729):1906-19. doi: 10.1016/S0140-6736(10)60409-6. Epub 2010 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验