Suppr超能文献

用于人工耳蜗植入计算模拟的自动模型生成框架

Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation.

作者信息

Mangado Nerea, Ceresa Mario, Duchateau Nicolas, Kjer Hans Martin, Vera Sergio, Dejea Velardo Hector, Mistrik Pavel, Paulsen Rasmus R, Fagertun Jens, Noailly Jérôme, Piella Gemma, González Ballester Miguel Ángel

机构信息

Simbiosys Research Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Asclepios Research Project, INRIA Sophia Antipolis, Valbonne, France.

出版信息

Ann Biomed Eng. 2016 Aug;44(8):2453-2463. doi: 10.1007/s10439-015-1541-y. Epub 2015 Dec 29.

Abstract

Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging. To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient's CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns constitutive parameters to all components of the finite element model. This model can then be used to study in silico the effects of the electrical stimulation of the cochlear implant. Results are shown on a total of 25 models of patients. In all cases, a final mesh suitable for finite element simulations was obtained, in an average time of 94 s. The framework has proven to be fast and robust, and is promising for a detailed prognosis of the cochlear implantation surgery.

摘要

人工耳蜗植入计算建模的最新进展有望在手术前通过计算机模拟研究植入物的性能。然而,在创建包含外部设备几何形状的患者解剖结构完整计算模型时仍然具有挑战性。为应对这一挑战,我们提出了一个自动框架,用于生成针对植入耳蜗有限元建模的患者特异性网格。首先,从高分辨率解剖μCT图像构建统计形状模型。然后,通过将统计模型与患者的CT图像拟合,获得患者特异性耳蜗解剖结构的精确模型。采用基于平行传输框架的算法进行人工耳蜗的虚拟植入。我们的自动框架还纳入了周围的骨骼和神经纤维,并为有限元模型的所有组件分配本构参数。然后,该模型可用于通过计算机模拟研究人工耳蜗电刺激的效果。共展示了25个患者模型的结果。在所有情况下,平均用时94秒获得了适合有限元模拟的最终网格。该框架已被证明快速且稳健,有望为人工耳蜗植入手术提供详细的预后评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验