Suppr超能文献

靶向肾上皮通道以控制昆虫媒介。

Targeting renal epithelial channels for the control of insect vectors.

作者信息

Beyenbach Klaus W, Yu Yasong, Piermarini Peter M, Denton Jerod

机构信息

Department of Biomedical Sciences; Cornell University ; Ithaca, NY USA.

College of Medicine; SUNY Downstate Medical Center ; Brooklyn, NY USA.

出版信息

Tissue Barriers. 2015 Sep 1;3(4):e1081861. doi: 10.1080/21688370.2015.1081861. eCollection 2015 Oct-Dec.

Abstract

Three small molecules were identified in high throughput screens that 1) block renal inward rectifier potassium (Kir) channels of Aedes aegypti expressed in HEK cells and Xenopus oocytes, 2) inhibit the secretion of KCl but not NaCl in isolated Malpighian tubules, and after injection into the hemolymph, 3) inhibit KCl excretion in vivo, and 4) render mosquitoes flightless or dead within 24h. Some mosquitoes had swollen abdomens at death consistent with renal failure. VU625, the most potent and promising small molecule for development as mosquitocide, inhibits AeKir1-mediated currents with an IC50 less than 100 nM. It is highly selective for AeKir1 over mammalian Kir channels, and it affects only 3 of 68 mammalian membrane proteins. These results document 1) renal failure as a new mode-of-action for mosquitocide development, 2) renal Kir channels as molecular target for inducing renal failure, and 3) the promise of the discovery and development of new species-specific insecticides.

摘要

在高通量筛选中鉴定出三种小分子,它们能够:1)阻断在人胚肾细胞(HEK细胞)和非洲爪蟾卵母细胞中表达的埃及伊蚊肾脏内向整流钾通道(Kir);2)抑制离体马氏管中氯化钾而非氯化钠的分泌,且在注入血淋巴后,3)抑制体内氯化钾的排泄;4)使蚊子在24小时内无法飞行或死亡。一些蚊子死亡时腹部肿胀,这与肾衰竭相符。VU625是作为灭蚊剂开发最有效且最具潜力的小分子,它抑制AeKir1介导的电流,半数抑制浓度(IC50)小于100纳摩尔。它对AeKir1的选择性远高于哺乳动物的Kir通道,并且仅影响68种哺乳动物膜蛋白中的3种。这些结果证明:1)肾衰竭是灭蚊剂开发的一种新作用方式;2)肾脏Kir通道是诱导肾衰竭的分子靶点;3)发现和开发新的物种特异性杀虫剂具有前景。

相似文献

1
Targeting renal epithelial channels for the control of insect vectors.
Tissue Barriers. 2015 Sep 1;3(4):e1081861. doi: 10.1080/21688370.2015.1081861. eCollection 2015 Oct-Dec.
2
Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels.
PLoS One. 2014 Nov 6;9(11):e110772. doi: 10.1371/journal.pone.0110772. eCollection 2014.
3
Localization and role of inward rectifier K(+) channels in Malpighian tubules of the yellow fever mosquito Aedes aegypti.
Insect Biochem Mol Biol. 2015 Dec;67:59-73. doi: 10.1016/j.ibmb.2015.06.006. Epub 2015 Jun 12.
4
Eliciting renal failure in mosquitoes with a small-molecule inhibitor of inward-rectifying potassium channels.
PLoS One. 2013 May 29;8(5):e64905. doi: 10.1371/journal.pone.0064905. Print 2013.
5
Cloning and functional characterization of inward-rectifying potassium (Kir) channels from Malpighian tubules of the mosquito Aedes aegypti.
Insect Biochem Mol Biol. 2013 Jan;43(1):75-90. doi: 10.1016/j.ibmb.2012.09.009. Epub 2012 Oct 17.
7
Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342.
Am J Physiol Regul Integr Comp Physiol. 2014 Oct 1;307(7):R850-61. doi: 10.1152/ajpregu.00106.2014. Epub 2014 Jul 23.
8
Malpighian Tubules as Novel Targets for Mosquito Control.
Int J Environ Res Public Health. 2017 Jan 24;14(2):111. doi: 10.3390/ijerph14020111.
9
Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti.
Comp Biochem Physiol B Biochem Mol Biol. 2017 Feb;204:35-44. doi: 10.1016/j.cbpb.2016.11.003. Epub 2016 Nov 9.

引用本文的文献

1
Inwardly rectifying potassium channels: Critical insights for insect species and Apis mellifera.
Channels (Austin). 2025 Dec;19(1):2529250. doi: 10.1080/19336950.2025.2529250. Epub 2025 Jul 10.
8

本文引用的文献

1
Localization and role of inward rectifier K(+) channels in Malpighian tubules of the yellow fever mosquito Aedes aegypti.
Insect Biochem Mol Biol. 2015 Dec;67:59-73. doi: 10.1016/j.ibmb.2015.06.006. Epub 2015 Jun 12.
2
Computational and functional analyses of a small-molecule binding site in ROMK.
Biophys J. 2015 Mar 10;108(5):1094-103. doi: 10.1016/j.bpj.2015.01.022.
3
Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels.
PLoS One. 2014 Nov 6;9(11):e110772. doi: 10.1371/journal.pone.0110772. eCollection 2014.
4
Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.
Environ Sci Pollut Res Int. 2015 Jan;22(1):5-34. doi: 10.1007/s11356-014-3470-y. Epub 2014 Sep 19.
5
Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis.
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14301-6. doi: 10.1073/pnas.1412706111. Epub 2014 Sep 16.
6
Effects of neonicotinoids and fipronil on non-target invertebrates.
Environ Sci Pollut Res Int. 2015 Jan;22(1):68-102. doi: 10.1007/s11356-014-3471-x. Epub 2014 Sep 17.
7
Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342.
Am J Physiol Regul Integr Comp Physiol. 2014 Oct 1;307(7):R850-61. doi: 10.1152/ajpregu.00106.2014. Epub 2014 Jul 23.
8
The excretion of NaCl and KCl loads in mosquitoes. 1. Control data.
Am J Physiol Regul Integr Comp Physiol. 2014 Oct 1;307(7):R837-49. doi: 10.1152/ajpregu.00105.2014. Epub 2014 Jul 23.
9
Targeting potassium channels in cancer.
J Cell Biol. 2014 Jul 21;206(2):151-62. doi: 10.1083/jcb.201404136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验