Suppr超能文献

系统性杀虫剂(新烟碱类和氟虫腈):趋势、用途、作用方式及代谢物

Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.

作者信息

Simon-Delso N, Amaral-Rogers V, Belzunces L P, Bonmatin J M, Chagnon M, Downs C, Furlan L, Gibbons D W, Giorio C, Girolami V, Goulson D, Kreutzweiser D P, Krupke C H, Liess M, Long E, McField M, Mineau P, Mitchell E A D, Morrissey C A, Noome D A, Pisa L, Settele J, Stark J D, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs J P, Whitehorn P R, Wiemers M

机构信息

Environmental Sciences, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands,

出版信息

Environ Sci Pollut Res Int. 2015 Jan;22(1):5-34. doi: 10.1007/s11356-014-3470-y. Epub 2014 Sep 19.

Abstract

Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.

摘要

自20世纪80年代末被发现以来,新烟碱类杀虫剂已成为全球使用最广泛的一类杀虫剂,其大规模应用范围涵盖植物保护(作物、蔬菜、水果)、兽用产品、杀生物剂以及水产养殖中的无脊椎害虫防治。在本综述中,我们将苯基吡唑类氟虫腈与新烟碱类放在一起讨论,因为它们在毒性、物理化学特性以及在环境中的存在方面具有相似性。新烟碱类和氟虫腈目前约占全球杀虫剂市场的三分之一;2010年,典型新烟碱类杀虫剂吡虫啉的全球年产量估计约为20000吨活性物质。新烟碱类和氟虫腈最初成功的原因有几个:(1)目标害虫中尚无已知的抗药性,主要是因为它们是最近才研发出来的;(2)它们的物理化学性质相对于前代杀虫剂(如有机磷类、氨基甲酸酯类、拟除虫菊酯类等)具有许多优势;(3)它们被认为可降低操作人员和消费者面临的风险。由于其具有内吸性,它们可通过根部或叶片被吸收,并转运到植物的各个部位,这反过来又使它们对食草昆虫具有有效的毒性。毒性会持续不同的时间段,这取决于植物、其生长阶段以及所施用的农药量。有多种施用方式可供选择,包括最常见的通过种子包衣进行的预防性非良好农业规范(GAP)施用。由于其广泛使用和物理化学性质,这些物质可在包括土壤、水和空气在内的所有环境介质中被发现。新烟碱类和氟虫腈通过干扰无脊椎动物中枢神经系统中的神经传递发挥作用。新烟碱类模拟神经递质的作用,而氟虫腈抑制神经元受体。这样一来,它们持续刺激神经元,最终导致目标无脊椎动物死亡。与几乎所有杀虫剂一样,它们对非目标生物(包括昆虫捕食者和脊椎动物)也可能产生致死和亚致死影响。此外,已记录到它们与其他应激源之间存在一系列协同效应。在此,我们广泛综述它们的代谢途径,展示它们如何形成具有化合物特异性的和常见的代谢产物,而这些代谢产物本身可能具有毒性。这可能导致毒性延长。鉴于它们广泛的商业扩张、作用方式、在植物中的内吸性、持久性和环境归宿,再加上关于这些化合物及其代谢产物毒性概况的信息有限,新烟碱类和氟虫腈可能会给环境带来重大风险。因此,及时对其使用的潜在附带影响进行全球评估是很有必要的。本论文以及本全球文献综述后续各章探讨了这些风险,并显示出越来越多的证据表明,这些杀虫剂的低浓度持续存在会带来不良环境影响的严重风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验