Suppr超能文献

热拉伸纤维作为神经导向支架。

Thermally drawn fibers as nerve guidance scaffolds.

作者信息

Koppes Ryan A, Park Seongjun, Hood Tiffany, Jia Xiaoting, Abdolrahim Poorheravi Negin, Achyuta Anilkumar Harapanahalli, Fink Yoel, Anikeeva Polina

机构信息

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Biomaterials. 2016 Mar;81:27-35. doi: 10.1016/j.biomaterials.2015.11.063. Epub 2015 Dec 2.

Abstract

Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth.

摘要

合成神经支架有望最终取代自体神经移植,用于周围神经损伤后的组织修复。尽管有大量证据表明支架的几何形状和尺寸会影响轴突生长速度,但由于材料加工的限制,对这些参数进行系统评估仍然是一项挑战。我们采用纤维拉伸技术设计了一系列具有不同几何形状和芯尺寸的聚合物基神经支架。利用分离的完整背根神经节作为体外模型系统,我们确定了促进这些纤维支架内神经生长的关键特征。我们的方法能够在支架核心内的神经束尺度上直接整合微观地形,从而加速施万细胞迁移以及神经突生长和排列。我们的研究结果表明,纤维拉伸为制造能够控制方向并加速轴突生长速度的神经导向通道提供了一种可扩展且通用的策略。

相似文献

1
Thermally drawn fibers as nerve guidance scaffolds.
Biomaterials. 2016 Mar;81:27-35. doi: 10.1016/j.biomaterials.2015.11.063. Epub 2015 Dec 2.
3
Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications.
J Neural Eng. 2009 Feb;6(1):016001. doi: 10.1088/1741-2560/6/1/016001. Epub 2008 Dec 22.
4
Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration.
Acta Biomater. 2010 Aug;6(8):2970-8. doi: 10.1016/j.actbio.2010.02.020. Epub 2010 Feb 16.
6
Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth.
J Biomed Mater Res A. 2007 Dec 1;83(3):636-45. doi: 10.1002/jbm.a.31285.
7
Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering.
Biomaterials. 2005 May;26(13):1507-14. doi: 10.1016/j.biomaterials.2004.05.012.
8
Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating the peripheral nervous system.
J Biomed Mater Res A. 2011 Jun 1;97(3):230-42. doi: 10.1002/jbm.a.33049. Epub 2011 Mar 25.
9
Injectable, Magnetically Orienting Electrospun Fiber Conduits for Neuron Guidance.
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):356-372. doi: 10.1021/acsami.8b18344. Epub 2018 Dec 19.
10
Orientated Guidance of Peripheral Nerve Regeneration Using Conduits with a Microtube Array Sheet (MTAS).
ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8437-50. doi: 10.1021/acsami.5b00215. Epub 2015 Apr 17.

引用本文的文献

1
Static Magnetic Stimulation and Magnetic Microwires Synergistically Enhance and Guide Neurite Outgrowth.
Adv Healthc Mater. 2025 Jan;14(3):e2403956. doi: 10.1002/adhm.202403956. Epub 2024 Nov 20.
2
Flexible multimaterial fibers in modern biomedical applications.
Natl Sci Rev. 2024 Sep 23;11(10):nwae333. doi: 10.1093/nsr/nwae333. eCollection 2024 Oct.
3
Recent progresses in neural tissue engineering using topographic scaffolds.
Am J Stem Cells. 2024 Feb 25;13(1):1-26. doi: 10.62347/WMDZ8890. eCollection 2024.
4
Electrical stimulation via repeated biphasic conducting materials for peripheral nerve regeneration.
J Mater Sci Mater Med. 2023 Nov 15;34(11):61. doi: 10.1007/s10856-023-06763-x.
5
Submillimeter Multifunctional Ferromagnetic Fiber Robots for Navigation, Sensing, and Modulation.
Adv Healthc Mater. 2023 Nov;12(28):e2300964. doi: 10.1002/adhm.202300964. Epub 2023 Jul 27.
7
Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing.
Biosensors (Basel). 2022 Jul 24;12(8):559. doi: 10.3390/bios12080559.
9
Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review.
Front Bioeng Biotechnol. 2022 Feb 9;9:807533. doi: 10.3389/fbioe.2021.807533. eCollection 2021.

本文引用的文献

2
Optogenetic control of nerve growth.
Sci Rep. 2015 May 18;5:9669. doi: 10.1038/srep09669.
3
Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface.
ACS Appl Mater Interfaces. 2015 Apr 8;7(13):7189-96. doi: 10.1021/am509227t. Epub 2015 Mar 26.
4
Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair.
Biomaterials. 2015 May;49:77-89. doi: 10.1016/j.biomaterials.2015.01.055. Epub 2015 Feb 14.
5
Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo.
Nat Biotechnol. 2015 Mar;33(3):277-84. doi: 10.1038/nbt.3093. Epub 2015 Jan 19.
6
Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.
Tissue Eng Part A. 2015 Mar;21(5-6):1152-62. doi: 10.1089/ten.TEA.2014.0266. Epub 2015 Jan 19.
7
Viscoelasticity of repaired sciatic nerve by poly(lactic-co-glycolic acid) tubes.
Neural Regen Res. 2013 Nov 25;8(33):3131-8. doi: 10.3969/j.issn.1673-5374.2013.33.007.
8
Extending neurites sense the depth of the underlying topography during neuronal differentiation and contact guidance.
Biomaterials. 2014 Sep;35(27):7750-61. doi: 10.1016/j.biomaterials.2014.06.008. Epub 2014 Jun 19.
9
Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.
J Neural Eng. 2014 Aug;11(4):046002. doi: 10.1088/1741-2560/11/4/046002. Epub 2014 Jun 3.
10
Adherence and shear-resistance of primary human endothelial cells on smooth poly(ether imide) films.
Clin Hemorheol Microcirc. 2014;57(2):147-58. doi: 10.3233/CH-141826.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验