Ruge Christian A, Bohr Adam, Beck-Broichsitter Moritz, Nicolas Valérie, Tsapis Nicolas, Fattal Elias
Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
Microscopy facility, UMS IPSIT (Institut Paris Saclay d'Innovation Thérapeutique), Univ. Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
Colloids Surf B Biointerfaces. 2016 Mar 1;139:219-27. doi: 10.1016/j.colsurfb.2015.12.017. Epub 2015 Dec 12.
The conversion of colloidal drug carriers/polymeric nanoparticles into dry microparticulate powders (e.g., by spray-drying) is a prominent approach to overcome the aerodynamic limitations of these formulations for delivery via inhalation. However, to what extent such nano-embedded microparticles disintegrate into individual/intact nanoparticles after contacting relevant physiological media has so far not been addressed. Polymeric nanoparticles were spray-dried into nano-embedded microparticles (NEMs) using different amounts of trehalose as embedding matrix excipient. Formulations were characterized and then evaluated for their disintegration behavior after aerosolization onto model mucus. Although a rapid and complete aqueous redispersion was observed for specific excipient/nanoparticle weight ratios (i.e., greater than 1/1), the same formulations revealed no disintegration after deposition onto a static mucus layer. Double-labeled NEMs powders (i.e., dual color staining of polymeric nanoparticles and trehalose) demonstrated rapid matrix dissolution, while the nanoparticle aggregates persisted. When deposited onto agitated mucus, however, sufficient disintegration of NEMs into individual polymeric nanoparticles was observed. These findings indicate that mechanical forces are necessary to overcome the attraction between individual nanoparticles found within the NEMs. Thus, it remains questionable whether the lung mechanics (e.g., breathing, mucociliary clearance) acting on these formulations will contribute to the overall disintegration process.
将胶体药物载体/聚合物纳米颗粒转化为干燥的微粒粉末(例如通过喷雾干燥)是克服这些制剂经吸入给药时空气动力学限制的一种重要方法。然而,到目前为止,这种纳米包埋微粒在接触相关生理介质后在多大程度上会分解为单个/完整的纳米颗粒尚未得到解决。使用不同量的海藻糖作为包埋基质赋形剂,将聚合物纳米颗粒喷雾干燥成纳米包埋微粒(NEMs)。对制剂进行表征,然后评估其雾化到模型黏液上后的崩解行为。尽管对于特定的赋形剂/纳米颗粒重量比(即大于1/1)观察到快速且完全的水性再分散,但相同的制剂在沉积到静态黏液层上后未显示出崩解。双标记的NEMs粉末(即聚合物纳米颗粒和海藻糖的双色染色)显示出基质快速溶解,而纳米颗粒聚集体持续存在。然而,当沉积到搅动的黏液上时,观察到NEMs充分崩解为单个聚合物纳米颗粒。这些发现表明,需要机械力来克服NEMs中单个纳米颗粒之间的吸引力。因此,作用于这些制剂的肺力学(例如呼吸、黏液纤毛清除)是否会有助于整体崩解过程仍值得怀疑。