van Reenen Stephan, Kemerink Martijn, Snaith Henry J
Department of Physics, University of Oxford, Clarendon Laboratory , Parks Road, Oxford, OX1 3PU, United Kingdom.
Department of Physics, Chemistry and Biology (IFM), Linköping University , SE-58 183, Linköping, Sweden.
J Phys Chem Lett. 2015 Oct 1;6(19):3808-14. doi: 10.1021/acs.jpclett.5b01645. Epub 2015 Sep 10.
Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.
有机-无机卤化铅钙钛矿与大多数其他半导体不同,因为它们展现出电子运动和离子运动的特性。准确理解这些特性对光电子的影响,对于全面优化器件以及了解钙钛矿太阳能电池和更广泛的光电器件的任何局限性至关重要。在这里,我们使用数值漂移扩散模型来描述钙钛矿太阳能电池的器件运行情况。为了在模拟的电流-电压特性中实现滞后现象,我们必须同时考虑离子迁移和充当复合中心的电子电荷陷阱。被俘获的电子电荷与带相反电荷的自由电子载流子复合,其中自由电子载流子的密度取决于钙钛矿中与偏压相关的离子分布。因此,我们的结果表明,减少可移动离子物种的密度或钙钛矿界面处的载流子俘获,将消除钙钛矿太阳能电池中的不利滞后现象。这为正在进行的研究工作提供了明确的目标,并统一了先前相互矛盾的实验观察结果和理论。