Diethelm Matthias, Lukas Tino, Smith Joel, Dasgupta Akash, Caprioglio Pietro, Futscher Moritz, Hany Roland, Snaith Henry J
Department of Physics, University of Oxford, Clarendon Laboratory Oxford OX1 3PU UK
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics CH-8600 Dübendorf Switzerland.
Energy Environ Sci. 2024 Dec 17;18(3):1385-1397. doi: 10.1039/d4ee02494j. eCollection 2025 Feb 4.
It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE. We reveal that the initial current density and current decay dynamics depend on the ion conductivity, which is the product of ion density and mobility. This means that for an unknown high ion density, typical in perovskite solar absorber layers, the mobility cannot be directly obtained from BACE measurements. We derive an analytical model to illustrate the relation between current density, conductivity and bulk field screening, supported by drift-diffusion simulations. By measuring the ion density independently with impedance spectroscopy, we show how the ion mobility can be derived from the BACE ion conductivity. We highlight important differences between the low- and high-ion density cases, which reveal whether the bulk electric field is fully screened or not. Our work clarifies the complex ion-related processes occurring within perovskite solar cells and gives new insight into the operational principles of halide perovskite devices as mixed ionic-electronic conductors.
人们普遍认为,移动离子是金属卤化物钙钛矿基光电器件中观察到的缓慢电子响应的原因,并强烈影响长期运行稳定性。电学表征方法大多观察离子对体相/界面复合的复杂间接影响,难以量化离子密度和迁移率,并且通常无法完全量化离子对体相和界面电场的影响。我们针对屏蔽体相电场的情况分析了偏压辅助电荷提取(BACE)方法,并引入了一种基于BACE的新表征方法,称为离子漂移BACE。我们发现初始电流密度和电流衰减动力学取决于离子电导率,离子电导率是离子密度和迁移率的乘积。这意味着对于钙钛矿太阳能吸收层中典型的未知高离子密度情况,迁移率不能直接从BACE测量中获得。我们推导了一个分析模型来说明电流密度、电导率和体相场屏蔽之间的关系,并得到了漂移扩散模拟的支持。通过用阻抗谱独立测量离子密度,我们展示了如何从BACE离子电导率推导出离子迁移率。我们强调了低离子密度和高离子密度情况之间的重要差异,这些差异揭示了体相电场是否被完全屏蔽。我们的工作阐明了钙钛矿太阳能电池中发生的与离子相关的复杂过程,并为卤化物钙钛矿器件作为混合离子-电子导体的工作原理提供了新的见解。