Hung Chieh-Ming, Wu Chi-Chi, Yang Yu-Hsuan, Chen Bo-Han, Lu Chih-Hsuan, Chu Che-Chun, Cheng Chun-Hao, Yang Chun-Yun, Lin Yan-Ding, Cheng Ching-Hsuan, Chen Jiann-Yeu, Ni I-Chih, Wu Chih-I, Yang Shang-Da, Chen Hsieh-Chih, Chou Pi-Tai
Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan.
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 300044, Taiwan.
Adv Sci (Weinh). 2024 Sep;11(36):e2404725. doi: 10.1002/advs.202404725. Epub 2024 Jul 30.
Lately, carbazole-based self-assembled monolayers (SAMs) are widely employed as effective hole-selective layers (HSLs) in inverted perovskite solar cells (PSCs). Nevertheless, these SAMs tend to aggregate in solvents due to their amphiphilic nature, hindering the formation of a monolayer on the ITO substrate and impeding effective passivation of deep defects in the perovskites. In this study, a series of new SAMs including DPA-B-PY, CBZ-B-PY, POZ-B-PY, POZ-PY, POZ-T-PY, and POZ-BT-PY are synthesized, which are employed as interfacial repairers and coated atop CNph SAM to form a robust CNph SAM@pseudo-planar monolayer as HSL in efficient inverted PSCs. The CNph SAM@pseudo-planar monolayer strategy enables a well-aligned interface with perovskites, synergistically promoting perovskite crystal growth, improving charge extraction/transport, and minimizing nonradiative interfacial recombination loss. As a result, the POZ-BT-PY-modified PSC realizes an impressively enhanced solar efficiency of up to 24.45% together with a fill factor of 82.63%. Furthermore, a wide bandgap PSC achieving over 19% efficiency. Upon treatment with the CNph SAM@pseudo-planar monolayer, also demonstrates a non-fullerene organic photovoltaics (OPVs) based on the PM6:BTP-eC9 blend, which achieves an efficiency of 17.07%. Importantly, these modified PSCs and OPVs all show remarkably improved stability under various testing conditions compared to their control counterparts.
近来,基于咔唑的自组装单分子层(SAMs)被广泛用作倒置钙钛矿太阳能电池(PSC)中的有效空穴选择性层(HSLs)。然而,由于其两亲性,这些SAMs在溶剂中容易聚集,阻碍了在ITO衬底上形成单分子层,并妨碍了对钙钛矿中深缺陷的有效钝化。在本研究中,合成了一系列新的SAMs,包括DPA-B-PY、CBZ-B-PY、POZ-B-PY、POZ-PY、POZ-T-PY和POZ-BT-PY,它们被用作界面修复剂,并涂覆在CNph SAM之上,以在高效倒置PSC中形成坚固的CNph SAM@伪平面单分子层作为HSL。CNph SAM@伪平面单分子层策略能够与钙钛矿形成排列良好的界面,协同促进钙钛矿晶体生长,改善电荷提取/传输,并最大限度地减少非辐射界面复合损失。结果,POZ-BT-PY修饰的PSC实现了高达24.45%的显著提高的太阳能效率以及82.63%的填充因子。此外,一种宽带隙PSC的效率超过19%。在用CNph SAM@伪平面单分子层处理后,基于PM6:BTP-eC9混合物的非富勒烯有机光伏(OPV)也表现出了17.07%的效率。重要的是,与对照相比,这些修饰的PSC和OPV在各种测试条件下均表现出显著提高的稳定性。