Agudelo D, Kreplak L, Tajmir-Riahi H A
Department of Chemistry-Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières (Québec), G9A 5H7, Canada.
Department of Physics and Atmospheric Science, Sir James Dunn Building Dalhousie University, Lord Dalhousie Drive, Halifax, NS B3H4R2, Canada.
Int J Biol Macromol. 2016 Apr;85:150-6. doi: 10.1016/j.ijbiomac.2015.12.057. Epub 2015 Dec 23.
The conjugation of tRNA with chitosan nanoparticles of different sizes 15,100 and 200 kDa was investigated in aqueous solution using multiple spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed that chitosan binds tRNA via G-C and A-U base pairs as well as backbone PO2 group, through electrostatic, hydrophilic and H-bonding contacts with overall binding constants of KCh-15-tRNA=4.1 (±0.60)×10(3)M(-1), KCh-100-tRNA=5.7 (±0.8)×10(3)M(-1) and KCh-200-tRNA=1.2 (±0.3)×10(4)M(-1). As chitosan size increases more stable polymer-tRNA conjugate is formed. AFM images showed major tRNA aggregation and particle formation occurred as chitosan concentration increased. Even though chitosan induced major biopolymer structural changes, tRNA remains in A-family structure.
使用多种光谱方法和原子力显微镜(AFM)在水溶液中研究了不同大小(15 kDa、100 kDa和200 kDa)的壳聚糖纳米颗粒与tRNA的缀合情况。结构分析表明,壳聚糖通过G-C和A-U碱基对以及主链PO2基团与tRNA结合,通过静电、亲水和氢键相互作用,其整体结合常数分别为KCh-15-tRNA = 4.1(±0.60)×10³ M⁻¹、KCh-100-tRNA = 5.7(±0.8)×10³ M⁻¹和KCh-200-tRNA = 1.2(±0.3)×10⁴ M⁻¹。随着壳聚糖尺寸的增加,形成了更稳定的聚合物-tRNA缀合物。AFM图像显示,随着壳聚糖浓度的增加,主要发生了tRNA聚集和颗粒形成。尽管壳聚糖引起了主要的生物聚合物结构变化,但tRNA仍保持A族结构。