Suppr超能文献

基于接触和距离的蛋白质动力学主成分分析

Contact- and distance-based principal component analysis of protein dynamics.

作者信息

Ernst Matthias, Sittel Florian, Stock Gerhard

机构信息

Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany.

出版信息

J Chem Phys. 2015 Dec 28;143(24):244114. doi: 10.1063/1.4938249.

Abstract

To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between Cα-atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.

摘要

为了解释复杂系统的分子动力学模拟,诸如主成分分析(PCA)之类的系统降维方法是一种成熟且流行的方法。除笛卡尔坐标外,内部坐标,例如主链二面角或各种距离,可在主成分分析中用作输入数据。采用两个著名的模型问题,即绒毛蛋白头部结构域的折叠和抑肽酶的功能动力学,本文对使用基于距离的度量的主成分分析进行了系统研究,该研究采用了Cα原子之间的距离以及包括侧链在内的残基间接触距离。虽然由于距离数量随分子大小呈二次方缩放,这种方法对于较大系统似乎不可行,但结果表明在分析中仅包含相对较少的选定距离就足够了(有时甚至更好)。通过考虑所得自由能景观的分辨率(以识别亚稳构象状态和势垒)以及相应自相关函数的衰减行为(以测试主成分分析的时间尺度分离)来评估主成分分析的质量。通过比较基于距离、二面角和笛卡尔坐标获得的结果,该研究表明输入变量的选择可能会极大地影响主成分分析的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验