Kraner S, Scholz R, Plasser F, Koerner C, Leo K
Institut für Angewandte Photophysik, Technische Universität Dresden, Dresden, Germany.
Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria.
J Chem Phys. 2015 Dec 28;143(24):244905. doi: 10.1063/1.4938527.
In current organic photovoltaic devices, the loss in energy caused by the charge transfer step necessary for exciton dissociation leads to a low open circuit voltage, being one of the main reasons for rather low power conversion efficiencies. A possible approach to avoid these losses is to tune the exciton binding energy to a value of the order of thermal energy, which would lead to free charges upon absorption of a photon, and therefore increase the power conversion efficiency towards the Shockley-Queisser limit. We determine the size of the excitons for different organic molecules and polymers by time dependent density functional theory calculations. For optically relevant transitions, the exciton size saturates around 0.7 nm for one-dimensional molecules with a size longer than about 4 nm. For the ladder-type polymer poly(benzimidazobenzophenanthroline), we obtain an exciton binding energy of about 0.3 eV, serving as a lower limit of the exciton binding energy for the organic materials investigated. Furthermore, we show that charge transfer transitions increase the exciton size and thus identify possible routes towards a further decrease of the exciton binding energy.
在当前的有机光伏器件中,激子解离所需的电荷转移步骤所导致的能量损失会致使开路电压较低,这是功率转换效率相当低的主要原因之一。一种避免这些损失的可能方法是将激子结合能调整到热能量级的值,这会在吸收光子时产生自由电荷,从而朝着肖克利 - 奎塞尔极限提高功率转换效率。我们通过含时密度泛函理论计算来确定不同有机分子和聚合物的激子尺寸。对于光学相关跃迁,对于尺寸大于约4 nm的一维分子,激子尺寸在约0.7 nm处饱和。对于梯型聚合物聚(苯并咪唑并苯并菲咯啉),我们得到约0.3 eV的激子结合能,作为所研究有机材料激子结合能的下限。此外,我们表明电荷转移跃迁会增大激子尺寸,从而确定了进一步降低激子结合能的可能途径。