Suppr超能文献

在“大数据”时代利用伤害叙事中的信息:理解并应用机器学习进行伤害监测。

Harnessing information from injury narratives in the 'big data' era: understanding and applying machine learning for injury surveillance.

作者信息

Vallmuur Kirsten, Marucci-Wellman Helen R, Taylor Jennifer A, Lehto Mark, Corns Helen L, Smith Gordon S

机构信息

Queensland University of Technology, Centre for Accident Research and Road Safety-Queensland, Brisbane, Queensland, Australia.

Center for Injury Epidemiology, Liberty Mutual Research Institute for Safety, Hopkinton, Massachusetts, USA.

出版信息

Inj Prev. 2016 Apr;22 Suppl 1(Suppl 1):i34-42. doi: 10.1136/injuryprev-2015-041813. Epub 2016 Jan 4.

Abstract

OBJECTIVE

Vast amounts of injury narratives are collected daily and are available electronically in real time and have great potential for use in injury surveillance and evaluation. Machine learning algorithms have been developed to assist in identifying cases and classifying mechanisms leading to injury in a much timelier manner than is possible when relying on manual coding of narratives. The aim of this paper is to describe the background, growth, value, challenges and future directions of machine learning as applied to injury surveillance.

METHODS

This paper reviews key aspects of machine learning using injury narratives, providing a case study to demonstrate an application to an established human-machine learning approach.

RESULTS

The range of applications and utility of narrative text has increased greatly with advancements in computing techniques over time. Practical and feasible methods exist for semiautomatic classification of injury narratives which are accurate, efficient and meaningful. The human-machine learning approach described in the case study achieved high sensitivity and PPV and reduced the need for human coding to less than a third of cases in one large occupational injury database.

CONCLUSIONS

The last 20 years have seen a dramatic change in the potential for technological advancements in injury surveillance. Machine learning of 'big injury narrative data' opens up many possibilities for expanded sources of data which can provide more comprehensive, ongoing and timely surveillance to inform future injury prevention policy and practice.

摘要

目的

每天都会收集大量的伤害描述,并且这些描述能够实时以电子方式获取,在伤害监测和评估中具有巨大的应用潜力。已经开发出机器学习算法,以比依赖人工对描述进行编码更及时的方式协助识别病例并对导致伤害的机制进行分类。本文旨在描述应用于伤害监测的机器学习的背景、发展、价值、挑战和未来方向。

方法

本文回顾了使用伤害描述进行机器学习的关键方面,并提供了一个案例研究,以展示一种已确立的人机学习方法的应用。

结果

随着时间的推移,随着计算技术的进步,叙述性文本的应用范围和实用性大大增加。存在用于伤害描述半自动分类的实用可行方法,这些方法准确、高效且有意义。案例研究中描述的人机学习方法实现了高灵敏度和阳性预测值,并将一个大型职业伤害数据库中人工编码的需求减少到不到三分之一的病例。

结论

在过去20年中,伤害监测技术进步的潜力发生了巨大变化。对“大量伤害描述数据”进行机器学习为扩展数据源开辟了许多可能性,这些数据源可以提供更全面、持续和及时的监测,为未来的伤害预防政策和实践提供信息。

相似文献

6
Near-miss narratives from the fire service: a Bayesian analysis.消防部门的险些事故叙述:贝叶斯分析。
Accid Anal Prev. 2014 Jan;62:119-29. doi: 10.1016/j.aap.2013.09.012. Epub 2013 Oct 1.
9
Bayesian decision support for coding occupational injury data.用于职业伤害数据编码的贝叶斯决策支持
J Safety Res. 2016 Jun;57:71-82. doi: 10.1016/j.jsr.2016.03.001. Epub 2016 Mar 15.
10
Injury narrative text classification using factorization model.基于因子分解模型的损伤叙事文本分类
BMC Med Inform Decis Mak. 2015;15 Suppl 1(Suppl 1):S5. doi: 10.1186/1472-6947-15-S1-S5. Epub 2015 May 20.

引用本文的文献

本文引用的文献

3
Injury narrative text classification using factorization model.基于因子分解模型的损伤叙事文本分类
BMC Med Inform Decis Mak. 2015;15 Suppl 1(Suppl 1):S5. doi: 10.1186/1472-6947-15-S1-S5. Epub 2015 May 20.
6
Using textual cause-of-death data to study drug poisoning deaths.利用文本死因数据研究药物中毒死亡。
Am J Epidemiol. 2014 Apr 1;179(7):884-94. doi: 10.1093/aje/kwt333. Epub 2014 Feb 11.
7
Near-miss narratives from the fire service: a Bayesian analysis.消防部门的险些事故叙述:贝叶斯分析。
Accid Anal Prev. 2014 Jan;62:119-29. doi: 10.1016/j.aap.2013.09.012. Epub 2013 Oct 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验