Malavaki C J, Sakkas G K, Mitrou G I, Kalyva A, Stefanidis I, Myburgh K H, Karatzaferi C
Muscle Physiology & Mechanics Lab DPESS, University of Thessaly, Karyes, 42100, Trikala, Greece.
Division of Nephrology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Panepistimiou Str, 41500, Larissa, Greece.
J Muscle Res Cell Motil. 2015 Dec;36(6):405-21. doi: 10.1007/s10974-015-9439-8. Epub 2016 Jan 4.
Disuse atrophy is the loss of skeletal muscle mass due to inactivity or lower than 'normal' use. It is not only a furtive component of the 'modern' sedentary lifestyle but also a part of numerous pathologies, where muscle loss is linked to disease specific and/or other toxicity factors, eventually leading to wasting (cachexia). Whether disuse-or-disease induced, muscle loss leads to weakness and metabolic comorbidities with a high societal and financial cost. This review discusses the intricate network of interacting signalling pathways including Atrogin-1/MAFbx, IGF1-Akt, myostatin, glucocorticoids, NF-kB, MAPKs and caspases that seem to regulate disuse atrophy but also share common activation patterns in other states of muscle loss such as sarcopenia or cachexia. Reactive oxygen species are also important regulators of cell signalling pathways that can accelerate proteolysis and depress protein synthesis. Exercise is an effective countermeasure and antioxidants may show some benefit. We discuss how the experimental model used can crucially affect the outcome and hence our understanding of atrophy. Timing of sampling is crucial as some signalling mechanisms reach their peak early during the atrophy process to rapidly decline thereafter, while other present high levels even weeks and months after study initiation. The importance of such differences lays in future consideration of appropriate treatment targets. Apart from attempting to correct defective genes or negate their effects, technological advances in new rational ways should aim to regulate specific gene expression at precise time points for the treatment of muscle atrophy in therapeutic protocols depending on the origin of atrophy induction.
废用性萎缩是指由于缺乏活动或低于“正常”使用水平而导致的骨骼肌质量丧失。它不仅是“现代”久坐不动生活方式的一个隐秘组成部分,也是众多疾病的一部分,在这些疾病中,肌肉流失与疾病特异性和/或其他毒性因素有关,最终导致消瘦(恶病质)。无论是废用性还是疾病引起的,肌肉流失都会导致虚弱和代谢合并症,给社会和经济带来高昂成本。本综述讨论了复杂的相互作用信号通路网络,包括Atrogin-1/MAFbx、IGF1-Akt、肌肉生长抑制素、糖皮质激素、NF-κB、丝裂原活化蛋白激酶(MAPKs)和半胱天冬酶,这些信号通路似乎调节废用性萎缩,但在肌肉流失的其他状态(如肌肉减少症或恶病质)中也具有共同的激活模式。活性氧也是细胞信号通路的重要调节因子,可加速蛋白质水解并抑制蛋白质合成。运动是一种有效的对策,抗氧化剂可能也有一定益处。我们讨论了所使用的实验模型如何能关键地影响结果,进而影响我们对萎缩的理解。采样时间至关重要,因为一些信号机制在萎缩过程早期达到峰值,随后迅速下降,而其他机制在研究开始数周甚至数月后仍保持高水平。这些差异的重要性在于未来对合适治疗靶点的考虑。除了试图纠正缺陷基因或消除其影响外,新的合理方法中的技术进步应以在精确时间点调节特定基因表达为目标,以便根据萎缩诱导的起源在治疗方案中治疗肌肉萎缩。