Suppr超能文献

胰腺癌患者的代谢组学特征:一种基于共识的方法来识别具有高度区分性的代谢物。

Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites.

作者信息

Di Gangi Iole Maria, Mazza Tommaso, Fontana Andrea, Copetti Massimiliano, Fusilli Caterina, Ippolito Antonio, Mattivi Fulvio, Latiano Anna, Andriulli Angelo, Vrhovsek Urska, Pazienza Valerio

机构信息

Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, TN, Italy.

Unit of Bioinformatics, I.R.C.C.S. "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy.

出版信息

Oncotarget. 2016 Feb 2;7(5):5815-29. doi: 10.18632/oncotarget.6808.

Abstract

PURPOSE

pancreatic adenocarcinoma is the fourth leading cause of cancer related deaths due to its aggressive behavior and poor clinical outcome. There is a considerable variability in the frequency of serum tumor markers in cancer' patients. We performed a metabolomics screening in patients diagnosed with pancreatic cancer.

EXPERIMENTAL DESIGN

Two targeted metabolomic assays were conducted on 40 serum samples of patients diagnosed with pancreatic cancer and 40 healthy controls. Multivariate methods and classification trees were performed.

MATERIALS AND METHODS

Sparse partial least squares discriminant analysis (SPLS-DA) was used to reduce the high dimensionality of a pancreatic cancer metabolomic dataset, differentiating between pancreatic cancer (PC) patients and healthy subjects. Using Random Forest analysis palmitic acid, 1,2-dioleoyl-sn-glycero-3-phospho-rac-glycerol, lanosterol, lignoceric acid, 1-monooleoyl-rac-glycerol, cholesterol 5α,6α epoxide, erucic acid and taurolithocholic acid (T-LCA), oleoyl-L-carnitine, oleanolic acid were identified among 206 metabolites as highly discriminating between disease states. Comparison between Receiver Operating Characteristic (ROC) curves for palmitic acid and CA 19-9 showed that the area under the ROC curve (AUC) of palmitic acid (AUC=1.000; 95% confidence interval) is significantly higher than CA 19-9 (AUC=0.963; 95% confidence interval: 0.896-1.000).

CONCLUSION

Mass spectrometry-based metabolomic profiling of sera from pancreatic cancer patients and normal subjects showed significant alterations in the profiles of the metabolome of PC patients as compared to controls. These findings offer an information-rich matrix for discovering novel candidate biomarkers with diagnostic or prognostic potentials.

摘要

目的

胰腺腺癌因其侵袭性生物学行为和较差的临床预后,成为癌症相关死亡的第四大主要原因。癌症患者血清肿瘤标志物的频率存在相当大的变异性。我们对诊断为胰腺癌的患者进行了代谢组学筛查。

实验设计

对40例诊断为胰腺癌的患者血清样本和40例健康对照进行了两种靶向代谢组学检测。采用了多变量方法和分类树。

材料与方法

使用稀疏偏最小二乘判别分析(SPLS-DA)来降低胰腺癌代谢组学数据集的高维度,区分胰腺癌(PC)患者和健康受试者。通过随机森林分析,在206种代谢物中鉴定出棕榈酸、1,2-二油酰-sn-甘油-3-磷酸-rac-甘油、羊毛甾醇、二十四烷酸、1-单油酰-rac-甘油、胆固醇5α,6α环氧化物、芥酸和牛磺石胆酸(T-LCA)、油酰-L-肉碱、齐墩果酸在疾病状态之间具有高度鉴别性。棕榈酸和CA 19-9的受试者工作特征(ROC)曲线比较显示,棕榈酸的ROC曲线下面积(AUC)(AUC = 1.000;95%置信区间)显著高于CA 19-9(AUC = 0.963;95%置信区间:0.896 - 1.000)。

结论

基于质谱的胰腺癌患者和正常受试者血清代谢组学分析显示,与对照组相比,PC患者的代谢组谱有显著改变。这些发现为发现具有诊断或预后潜力的新型候选生物标志物提供了一个信息丰富的矩阵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83b5/4868723/b3d7cf5d3cfc/oncotarget-07-5815-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验