Suppr超能文献

硝基甲烷的超快光解离动力学

Ultrafast Photodissociation Dynamics of Nitromethane.

作者信息

Nelson Tammie, Bjorgaard Josiah, Greenfield Margo, Bolme Cindy, Brown Katie, McGrane Shawn, Scharff R Jason, Tretiak Sergei

机构信息

Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States.

出版信息

J Phys Chem A. 2016 Feb 4;120(4):519-26. doi: 10.1021/acs.jpca.5b09776. Epub 2016 Jan 20.

Abstract

Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could be applied to the future design of controllable photoactive HE materials. In this study, the photodecomposition of NM from the nπ* state excited at 266 nm is being investigated on the femtosecond time scale. UV femtosecond transient absorption (TA) spectroscopy and excited state femtosecond stimulated Raman spectroscopy (FSRS) are combined with nonadiabatic excited state molecular dynamics (NA-ESMD) simulations to provide a unified picture of NM photodecomposition. The FSRS spectrum of the photoproduct exhibits peaks in the NO2 region and slightly shifted C-N vibrational peaks pointing to methyl nitrite formation as the dominant photoproduct. A total photolysis quantum yield of 0.27 and an nπ* state lifetime of ∼20 fs were predicted from NA-ESMD simulations. Predicted time scales revealed that NO2 dissociation occurs in 81 ± 4 fs and methyl nitrite formation is much slower having a time scale of 452 ± 9 fs corresponding to the excited state absorption feature with a decay of 480 ± 17 fs observed in the TA spectrum. Although simulations predict C-N bond cleavage as the primary photochemical process, the relative time scales are consistent with isomerization occurring via NO2 dissociation and subsequent rebinding of the methyl radical and nitrogen dioxide.

摘要

硝基甲烷(NM)是一种低敏感度的高爆炸药(HE),已知其在紫外线(UV)照射下会发生光解。NM的光学透明度、均匀性以及广泛的研究使其成为研究传统高爆炸药材料光解离机制的理想体系。NM分解过程中涉及的光化学过程可应用于未来可控光活性高爆炸药材料的设计。在本研究中,正在飞秒时间尺度上研究在266nm激发的nπ态下NM的光分解。紫外飞秒瞬态吸收(TA)光谱和激发态飞秒受激拉曼光谱(FSRS)与非绝热激发态分子动力学(NA-ESMD)模拟相结合,以提供NM光分解的统一图景。光产物的FSRS光谱在NO2区域呈现出峰,并且C-N振动峰略有偏移,表明亚硝酸甲酯的形成是主要的光产物。NA-ESMD模拟预测总光解量子产率为0.27,nπ态寿命约为20fs。预测的时间尺度表明,NO2解离发生在81±4fs,而亚硝酸甲酯的形成要慢得多,时间尺度为452±9fs,这与TA光谱中观察到的具有480±17fs衰减的激发态吸收特征相对应。尽管模拟预测C-N键断裂是主要的光化学过程,但相对时间尺度与通过NO2解离以及随后甲基自由基与二氧化氮的重新结合发生的异构化一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验