Suppr超能文献

原位活性炭添加到沉积物中的应用决策框架。

Decision-making framework for the application of in-situ activated carbon amendment to sediment.

机构信息

Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, South Korea.

Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020, United States.

出版信息

J Hazard Mater. 2016 Apr 5;306:184-192. doi: 10.1016/j.jhazmat.2015.12.019. Epub 2015 Dec 17.

Abstract

This study provides a decision-support framework and a design methodology for preliminary evaluation of field application of in-situ activated carbon (AC) amendment to sediment to control the (bio)availability of hydrophobic organic contaminants. The decision-making framework comprises four sequential steps: screening assessment, input parameter determination, model prediction, and evaluation for process optimization. The framework allows the application of state-of-the-art experimental and modeling techniques to assess the effectiveness of the treatment under different field conditions and is designed for application as a part of a feasibility study. Through a stepwise process it is possible to assess the effectiveness of in-situ AC amendment with a proper consideration of different site conditions and application scenarios possible in the field. The methodology incorporates the effect of various parameters on performance including: site-specific kinetic coefficients, varied AC dose and particle size, sediment and AC sorption parameters, and pore-water velocity. The modeling framework allows comparison of design alternatives for treatment optimization and estimation of long-term effectiveness over a period of 10-20 years under slow mass transfer in the field.

摘要

本研究提供了一个决策支持框架和设计方法,用于初步评估原位活性炭(AC)添加到沉积物中以控制疏水性有机污染物(bio)可利用性的现场应用。决策框架包括四个连续步骤:筛选评估、输入参数确定、模型预测和工艺优化评估。该框架允许应用最先进的实验和建模技术来评估在不同现场条件下处理的有效性,并且旨在作为可行性研究的一部分应用。通过逐步的过程,可以在适当考虑现场可能存在的不同场地条件和应用场景的情况下,评估原位 AC 改良的有效性。该方法考虑了各种参数对性能的影响,包括:特定于现场的动力学系数、不同的 AC 剂量和粒径、沉积物和 AC 吸附参数以及孔隙水速度。该建模框架允许比较处理优化的设计方案,并在现场缓慢传质的情况下估计 10-20 年内的长期有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验