Suppr超能文献

一种基于伪随机码调制视觉诱发电位的用于稳健轮椅控制应用的脑机接口。

A brain computer interface for robust wheelchair control application based on pseudorandom code modulated Visual Evoked Potential.

作者信息

Mohebbi Ali, Engelsholm Signe K D, Puthusserypady Sadasivan, Kjaer Troels W, Thomsen Carsten E, Sorensen Helge B D

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:602-5. doi: 10.1109/EMBC.2015.7318434.

Abstract

In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code, and the VEPs were recognized and classified using subject-specific algorithms. The system provided the ability of controlling a wheelchair model (LEGO(®) MINDSTORM(®) EV3 robot) in 4 different directions based on the elicited c-VEPs. Ten healthy subjects were evaluated in testing the system where an average accuracy of 97% was achieved. The promising results illustrate the potential of this approach when considering a real wheelchair application.

摘要

在这项初步研究中,开发了一种新颖且简约的基于脑机接口(BCI)的轮椅控制应用程序。该系统基于伪随机码调制视觉诱发电位(c-VEPs)。该方案中的视觉刺激基于Gold码生成,并且使用特定于受试者的算法对视觉诱发电位进行识别和分类。该系统能够根据诱发的c-VEPs在4个不同方向上控制轮椅模型(乐高(®)MINDSTORM(®)EV3机器人)。在测试该系统时对10名健康受试者进行了评估,平均准确率达到了97%。这些有前景的结果说明了在考虑实际轮椅应用时这种方法的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验