Suppr超能文献

用于跟踪动态功能磁共振成像脑网络的 L0 正则化时变稀疏逆协方差估计

L0-regularized time-varying sparse inverse covariance estimation for tracking dynamic fMRI brain networks.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1496-9. doi: 10.1109/EMBC.2015.7318654.

Abstract

Exploration of time-varying functional brain connectivity based on functional Magnetic Resonance Imaging (fMRI) data is important for understanding dynamic brain mechanisms. l1-penalized inverse covariance is a common measure for the inference of sparse structure of functional brain networks, and it has been recently extended to estimate time-varying sparse brain networks by using a sliding window and incorporating a smoothing constraint on temporal variation. However, l1 penalty cannot induce maximum sparsity, as compared with l0 penalty, so l0 penalty is supposed to have superior quality on inverse covariance estimation. This paper introduces a novel time-varying sparse inverse covariance estimation method based on dual l0-penalties (DLP). The new DLP method estimates the sparse inverse covariance by minimizing an l0-penalized log-likelihood function and an extra l0 penalty on temporal homogeneity. A cyclic descent optimization algorithm is further developed to localize the minimum of the objective function. Experiment results on simulated signals show that the proposed DLP method can achieve better performance than conventional l1-penalized methods in estimating time-varying sparse network structures under different scenarios.

摘要

基于功能磁共振成像(fMRI)数据探索时变功能脑连接对于理解动态脑机制至关重要。l1 惩罚逆协方差是推断功能脑网络稀疏结构的常用方法,最近已通过使用滑动窗口并对时间变化纳入平滑约束扩展到估计时变稀疏脑网络。然而,与 l0 惩罚相比,l1 惩罚不能诱导最大稀疏性,因此 l0 惩罚在逆协方差估计方面应具有更高的质量。本文介绍了一种基于对偶 l0 惩罚(DLP)的新型时变稀疏逆协方差估计方法。新的 DLP 方法通过最小化 l0 惩罚对数似然函数和对时间同质性的额外 l0 惩罚来估计稀疏逆协方差。进一步开发了一种循环下降优化算法来定位目标函数的最小值。在模拟信号上的实验结果表明,所提出的 DLP 方法在不同场景下估计时变稀疏网络结构时比传统的 l1 惩罚方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验