Boubchir Larbi, Touati Youcef, Daachi Boubaker, Chérif Arab Ali
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1761-4. doi: 10.1109/EMBC.2015.7318719.
In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier.
在基于思维的机器人控制中,当脑机接口(BMI)分类器/控制器产生的动作与用户的思维不对应时,可能会出现错误电位(ErrP)。使用稳态视觉诱发电位(SSVEP)技术时,分类错误发生时出现的ErrP仅通过检查脑电信号的时间或频率特征是不容易识别的。因此,需要一个补充分类过程来识别它们,以便停止动作进程并恢复到恢复状态。本文提出了一组时频(t-f)特征,用于检测和分类由于用户在任务空间中利用非侵入性BMI和机器人控制时观察到的误分类而在脑外活动中产生的脑电ErrP。所提出的特征能够在时频域中表征和检测ErrP活动。这些特征源自脑电信号时频表示中嵌入的信息,包括瞬时频率(IF)、时频信息复杂度、奇异值分解(SVD)信息、能量集中度和子带能量。对真实脑电数据的实验结果表明,使用所提出的时频特征检测和分类脑电ErrP,在使用二类支持向量机(SVM)分类器对50个脑电片段进行分类时,总体分类准确率高达97%。