Suppr超能文献

基于错误相关电位的下肢外骨骼假激活减少的脑机接口设计。

Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential.

机构信息

Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain.

Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain.

出版信息

Comput Methods Programs Biomed. 2024 Oct;255:108332. doi: 10.1016/j.cmpb.2024.108332. Epub 2024 Jul 18.

Abstract

BACKGROUND AND OBJECTIVE

Brain-Machine Interfaces (BMIs) based on a motor imagination paradigm provide an intuitive approach for the exoskeleton control during gait. However, their clinical applicability remains difficulted by accuracy limitations and sensitivity to false activations. A proposed improvement involves integrating the BMI with methods based on detecting Error Related Potentials (ErrP) to self-tune erroneous commands and enhance not only the system accuracy, but also its usability. The aim of the current research is to characterize the ErrP at the beginning of the gait with a lower limb exoskeleton to reduce the false starts in the BMI system. Furthermore, this study is valuable for determining which type of feedback, Tactile, Visual, or Visuo-Tactile, achieves the best performance in evoking and detecting the ErrP.

METHODS

The initial phase of the research concentrates on detecting ErrP at the beginning of gait to improve the efficiency of an asynchronous BMI based on motor imagery (BMI-MI) to control a lower limb exoskeleton. Initially, an experimental protocol is designed to evoke ErrP at the start of gait, employing three different stimuli: Tactile, Visual, and Visuo-Tactile. An iterative selection process is then utilized to characterize ErrP in both time and frequency domains and fine-tune various parameters, including electrode distribution, feature combinations, and classifiers. A generic classifier with 6 subjects is employed to configure an ensemble classification system for detecting ErrP and reducing the false starts.

RESULTS

The ensembled system configured with the selected parameters yields an average correction of false starts of 72.60 % ± 10.23, highlighting its corrective efficacy. Tactile feedback emerges as the most effective stimulus, outperforming Visual and Visuo-Tactile feedback in both training types.

CONCLUSIONS

The results suggest promising prospects for reducing the false starts when integrating ErrP with BMI-MI, employing Tactile feedback. Consequently, the security of the system is enhanced. Subsequent, further research efforts will focus on detecting error potential during movement for gait stop, in order to limit undesired stops.

摘要

背景与目的

基于运动想象范式的脑机接口(BMI)为外骨骼控制提供了一种直观的方法,在步态过程中。然而,其临床适用性仍然受到准确性限制和对虚假激活的敏感性的影响。一种改进方法是将 BMI 与检测错误相关电位(ErrP)的方法相结合,以自我调整错误命令,不仅提高系统的准确性,而且提高其可用性。本研究的目的是在下肢外骨骼开始步态时对 ErrP 进行特征描述,以减少 BMI 系统中的错误启动。此外,这项研究对于确定哪种类型的反馈,触觉、视觉还是视触觉,在诱发和检测 ErrP 方面能达到最佳效果是有价值的。

方法

研究的初始阶段集中在检测步态开始时的 ErrP,以提高基于运动想象(BMI-MI)的异步 BMI 控制下肢外骨骼的效率。首先,设计了一个实验方案来在步态开始时诱发 ErrP,使用三种不同的刺激:触觉、视觉和视触觉。然后,采用迭代选择过程来对 ErrP 在时域和频域进行特征描述,并对各种参数进行微调,包括电极分布、特征组合和分类器。采用一个具有 6 个受试者的通用分类器来配置一个用于检测 ErrP 和减少错误启动的集成分类系统。

结果

使用选定参数配置的集成系统平均纠正错误启动的比例为 72.60%±10.23%,突出了其纠正效果。触觉反馈是最有效的刺激,在两种训练类型中都优于视觉和视触觉反馈。

结论

结果表明,在将 ErrP 与 BMI-MI 结合使用时,采用触觉反馈可以有希望减少错误启动,从而提高系统的安全性。随后,我们将进一步研究检测运动过程中的错误潜力,以便限制不必要的停止。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验