Ahmad Rana Fayyaz, Malik Aamir Saeed, Kamel Nidal, Reza Faruque
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:1825-8. doi: 10.1109/EMBC.2015.7318735.
Any kind of visual information is encoded in terms of patterns of neural activity occurring inside the brain. Decoding neural patterns or its classification is a challenging task. Functional magnetic resonance imaging (fMRI) and Electroencephalography (EEG) are non-invasive neuroimaging modalities to capture the brain activity pattern in term of images and electric potential respectively. To get higher spatiotemporal resolution of human brain from these two complementary neuroimaging modalities, simultaneous EEG-fMRI can be helpful. In this paper, we proposed a framework for classifying the brain activity patterns with simultaneous EEG-fMRI. We have acquired five human participants' data with simultaneous EEG-fMRI by showing different object categories. Further, combined analysis of EEG and fMRI data was carried out. Extracted information through combine analysis is passed to support vector machine (SVM) classifier for classification purpose. We have achieved better classification accuracy using simultaneous EEG-fMRI i.e., 81.8% as compared to fMRI data standalone. This shows that multimodal neuroimaging can improve the classification accuracy of brain activity patterns as compared to individual modalities reported in literature.
任何一种视觉信息都是根据大脑内部发生的神经活动模式进行编码的。解码神经模式或对其进行分类是一项具有挑战性的任务。功能磁共振成像(fMRI)和脑电图(EEG)是分别根据图像和电势来捕捉大脑活动模式的非侵入性神经成像方式。为了从这两种互补的神经成像方式中获得更高的人类大脑时空分辨率,同步脑电图 - 功能磁共振成像可能会有所帮助。在本文中,我们提出了一个利用同步脑电图 - 功能磁共振成像对大脑活动模式进行分类的框架。我们通过展示不同的物体类别,获取了五名人类参与者的同步脑电图 - 功能磁共振成像数据。此外,还对脑电图和功能磁共振成像数据进行了联合分析。通过联合分析提取的信息被传递给支持向量机(SVM)分类器用于分类。与单独使用功能磁共振成像数据相比,我们使用同步脑电图 - 功能磁共振成像实现了更高的分类准确率,即81.8%。这表明与文献中报道的单个模式相比,多模态神经成像可以提高大脑活动模式的分类准确率。