Zafar Raheel, Kamel Nidal, Naufal Mohamad, Malik Aamir Saeed, Dass Sarat C, Ahmad Rana Fayyaz, Abdullah Jafri M, Reza Faruque
Department of Engineering, National University of Modern Languages, Islamabad, Pakistan.
Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Perak, Malaysia.
Australas Phys Eng Sci Med. 2018 Sep;41(3):633-645. doi: 10.1007/s13246-018-0656-5. Epub 2018 Jun 13.
Neuroscientists have investigated the functionality of the brain in detail and achieved remarkable results but this area still need further research. Functional magnetic resonance imaging (fMRI) is considered as the most reliable and accurate technique to decode the human brain activity, on the other hand electroencephalography (EEG) is a portable and low cost solution in brain research. The purpose of this study is to find whether EEG can be used to decode the brain activity patterns like fMRI. In fMRI, data from a very specific brain region is enough to decode the brain activity patterns due to the quality of data. On the other hand, EEG can measure the rapid changes in neuronal activity patterns due to its higher temporal resolution i.e., in msec. These rapid changes mostly occur in different brain regions. In this study, multivariate pattern analysis (MVPA) is used both for EEG and fMRI data analysis and the information is extracted from distributed activation patterns of the brain. The significant information among different classes is extracted using two sample t test in both data sets. Finally, the classification analysis is done using the support vector machine. A fair comparison of both data sets is done using the same analysis techniques, moreover simultaneously collected data of EEG and fMRI is used for this comparison. The final analysis is done with the data of eight participants; the average result of all conditions are found which is 65.7% for EEG data set and 64.1% for fMRI data set. It concludes that EEG is capable of doing brain decoding with the data from multiple brain regions. In other words, decoding accuracy with EEG MVPA is as good as fMRI MVPA and is above chance level.
神经科学家已经详细研究了大脑的功能并取得了显著成果,但该领域仍需进一步研究。功能磁共振成像(fMRI)被认为是解码人类大脑活动最可靠、最准确的技术,另一方面,脑电图(EEG)是大脑研究中一种便携且低成本的解决方案。本研究的目的是探究EEG是否能像fMRI一样用于解码大脑活动模式。在fMRI中,由于数据质量的原因,来自非常特定脑区的数据就足以解码大脑活动模式。另一方面,EEG因其更高的时间分辨率(即毫秒级)能够测量神经元活动模式的快速变化。这些快速变化大多发生在不同的脑区。在本研究中,多变量模式分析(MVPA)用于EEG和fMRI数据分析,信息从大脑的分布式激活模式中提取。在两个数据集中使用双样本t检验提取不同类别之间的重要信息。最后,使用支持向量机进行分类分析。使用相同的分析技术对两个数据集进行公平比较,此外,将EEG和fMRI同时采集的数据用于该比较。最终分析使用了八名参与者的数据;求出所有条件下的平均结果,EEG数据集为65.7%,fMRI数据集为64.1%。研究得出结论,EEG能够利用来自多个脑区的数据进行大脑解码。换句话说,EEG的MVPA解码精度与fMRI的MVPA一样好,且高于随机水平。