Suppr超能文献

使用自适应小波变换实现对运动意图的准确单试验检测。

Accurate single-trial detection of movement intention made possible using adaptive wavelet transform.

作者信息

Chamanzar Alireza, Malekmohammadi Alireza, Bahrani Masih, Shabany Mahdi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:1914-7. doi: 10.1109/EMBC.2015.7318757.

Abstract

The outlook of brain-computer interfacing (BCI) is very bright. The real-time, accurate detection of a motor movement task is critical in BCI systems. The poor signal-to-noise-ratio (SNR) of EEG signals and the ambiguity of noise generator sources in brain renders this task quite challenging. In this paper, we demonstrate a novel algorithm for precise detection of the onset of a motor movement through identification of event-related-desynchronization (ERD) patterns. Using an adaptive matched filter technique implemented based on an optimized continues Wavelet transform by selecting an appropriate basis, we can detect single-trial ERDs. Moreover, we use a maximum-likelihood (ML), electrooculography (EOG) artifact removal method to remove eye-related artifacts to significantly improve the detection performance. We have applied this technique to our locally recorded Emotiv(®) data set of 6 healthy subjects, where an average detection selectivity of 85 ± 6% and sensitivity of 88 ± 7.7% is achieved with a temporal precision in the range of -1250 to 367 ms in onset detections of single-trials.

摘要

脑机接口(BCI)的前景非常光明。在BCI系统中,对运动任务进行实时、准确的检测至关重要。脑电图(EEG)信号的低信噪比(SNR)以及大脑中噪声源的不确定性使得这项任务极具挑战性。在本文中,我们展示了一种通过识别事件相关去同步化(ERD)模式来精确检测运动起始的新算法。通过选择合适的基函数,基于优化的连续小波变换实现自适应匹配滤波技术,我们能够检测单次试验的ERD。此外,我们使用最大似然(ML)、眼电图(EOG)伪迹去除方法来去除与眼睛相关的伪迹,从而显著提高检测性能。我们已将此技术应用于我们本地记录的6名健康受试者的Emotiv(®)数据集,在单次试验起始检测中,平均检测选择性达到85 ± 6%,灵敏度达到88 ± 7.7%,时间精度在 -1250至367毫秒范围内。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验