Malekmohammadi Alireza, Rauschecker Josef P, Cheng Gordon
Institute for Cognitive Systems, Electrical Engineering, Technical University of Munich, 80333, Munich, Germany.
Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA.
Sci Rep. 2025 Jul 18;15(1):26174. doi: 10.1038/s41598-025-12135-y.
This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with acoustics, cross-subject EEG phase tracking should also exhibit significant similarity. To test this hypothesis, we propose a generalized subject-independent phase dissimilarity model, which eliminates the requirement for training on individuals. Our proposed model assesses the duration and number of cross-subject EEG-phase-alignments, influencing accuracy. EEG responses were recorded from seventeen participants who listened three times to 22 unfamiliar one-minute passages from audiobooks. Our findings demonstrate that the EEG phase is consistent within repeated cross-subject trials. Our model achieved an impressive EEG-based classification accuracy of 74.96%. Furthermore, an average of nine distinct phasic templates from different participants is sufficient to effectively train the model, regardless of the duration of EEG phase alignments. Additionally, the duration of EEG-phase-alignments positively correlates with classification accuracy. These results indicate that predicting a listener's speech is feasible by training the model with phasic templates from other listeners, owing to the consistent cross-subject EEG phase alignments with speech acoustics.
本研究通过语音分类来检验跨受试者脑电图(EEG)相位跟踪对听觉刺激响应的一致性。反复聆听音频会使听众在各次试验中产生一致的脑电图相位对齐。如果脑电图的相位与声学特征更紧密地对齐,那么跨受试者脑电图相位跟踪也应表现出显著的相似性。为了验证这一假设,我们提出了一种广义的独立于个体的相位差异模型,该模型消除了对个体进行训练的要求。我们提出的模型评估跨受试者脑电图相位对齐的持续时间和数量,这会影响准确性。从17名参与者那里记录了脑电图响应,他们听了3次来自有声读物的22段不熟悉的一分钟段落。我们的研究结果表明,在反复的跨受试者试验中脑电图相位是一致的。我们的模型基于脑电图实现了令人印象深刻的74.96%的分类准确率。此外,平均来自不同参与者的9个不同的相位模板就足以有效地训练该模型,而与脑电图相位对齐的持续时间无关。此外,脑电图相位对齐的持续时间与分类准确率呈正相关。这些结果表明,由于跨受试者脑电图相位与语音声学特征的一致性,通过用其他听众的相位模板训练模型来预测听众的语音是可行的。