Suppr超能文献

使用肌肉骨骼模型对身体残障人士上肢力量进行估计:一项敏感性分析。

Upper limb strength estimation of physically impaired persons using a musculoskeletal model: A sensitivity analysis.

作者信息

Carmichael Marc G, Liu Dikai

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2438-41. doi: 10.1109/EMBC.2015.7318886.

Abstract

Sensitivity of upper limb strength calculated from a musculoskeletal model was analyzed, with focus on how the sensitivity is affected when the model is adapted to represent a person with physical impairment. Sensitivity was calculated with respect to four muscle-tendon parameters: muscle peak isometric force, muscle optimal length, muscle pennation, and tendon slack length. Results obtained from a musculoskeletal model of average strength showed highest sensitivity to tendon slack length, followed by muscle optimal length and peak isometric force, which is consistent with existing studies. Muscle pennation angle was relatively insensitive. The analysis was repeated after adapting the musculoskeletal model to represent persons with varying severities of physical impairment. Results showed that utilizing the weakened model significantly increased the sensitivity of the calculated strength at the hand, with parameters previously insensitive becoming highly sensitive. This increased sensitivity presents a significant challenge in applications utilizing musculoskeletal models to represent impaired individuals.

摘要

分析了从肌肉骨骼模型计算出的上肢力量的敏感性,重点关注当模型被调整以代表有身体损伤的人时,敏感性是如何受到影响的。针对四个肌肉-肌腱参数计算了敏感性:肌肉峰值等长力、肌肉最佳长度、肌肉羽状角和肌腱松弛长度。从平均力量的肌肉骨骼模型获得的结果显示,对肌腱松弛长度的敏感性最高,其次是肌肉最佳长度和峰值等长力,这与现有研究一致。肌肉羽状角相对不敏感。在调整肌肉骨骼模型以代表不同严重程度身体损伤的人之后,重复了该分析。结果表明,使用弱化模型显著提高了手部计算力量的敏感性,之前不敏感的参数变得高度敏感。这种增加的敏感性在利用肌肉骨骼模型来代表受损个体的应用中提出了重大挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验