Suppr超能文献

基于不同复杂度的力测量和神经网络,对手指、手掌和手臂肌肉参数的预测。

Predictions of thumb, hand, and arm muscle parameters derived using force measurements of varying complexity and neural networks.

机构信息

University of Florida, Department of Electrical and Computer Engineering, Gainesville, FL, United States.

University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, United States.

出版信息

J Biomech. 2023 Dec;161:111834. doi: 10.1016/j.jbiomech.2023.111834. Epub 2023 Oct 11.

Abstract

Subject-specific musculoskeletal models are a promising avenue for personalized healthcare. However, current methods for producing personalized models require dense, biomechanical datasets that include expensive and time-consuming physiological measurements. For personalized models to be clinically useful, we must be able to rapidly generate models from simple, easy to collect data. In this context, the objective of this paper is to evaluate if and how simple data, namely height/weight and pinch force data, can be used to achieve model personalization via machine learning. Using simulated lateral pinch force measurements from a synthetic population of 40,000 randomly generated subjects, we train neural networks to estimate four Hill-type muscle model parameters and bone density. We compare parameter estimates to the true parameters of 10,000 additional synthetic subjects. We also generate new personalized models using the parameter estimates and perform new lateral pinch simulations to compare predicted forces using these personalized models to those generated using a baseline model. We demonstrate that increasing force measurement complexity reduces the root-mean-square error in the majority of parameter estimates. Additionally, musculoskeletal models using neural network-based parameter estimates provide up to an 80% reduction in absolute error in simulated forces when compared to a generic model. Thus, easily obtained force measurements may be suitable for personalizing models of the thumb, although extending the method to more tasks and models involving other joints likely requires additional measurements.

摘要

特定于主题的肌肉骨骼模型是个性化医疗保健的一个有前途的途径。然而,目前制作个性化模型的方法需要密集的、生物力学的数据集,其中包括昂贵且耗时的生理测量。为了使个性化模型在临床上有用,我们必须能够从简单、易于收集的数据中快速生成模型。在这种情况下,本文的目的是评估简单的数据(即身高/体重和捏力数据)是否以及如何可以通过机器学习来实现模型个性化。使用来自 40000 个随机生成的受试者的合成群体的模拟横向捏力测量,我们训练神经网络来估计四个 Hill 型肌肉模型参数和骨密度。我们将参数估计值与另外 10000 个合成受试者的真实参数进行比较。我们还使用参数估计值生成新的个性化模型,并使用这些个性化模型执行新的横向捏力模拟,以比较使用这些个性化模型生成的预测力与使用基线模型生成的预测力。我们证明,增加力测量的复杂性可以降低大多数参数估计值的均方根误差。此外,使用基于神经网络的参数估计的肌肉骨骼模型在模拟力方面与通用模型相比,可将绝对误差降低 80%。因此,虽然将该方法扩展到涉及其他关节的更多任务和模型可能需要额外的测量,但容易获得的力测量可能适合于个性化拇指模型。

相似文献

5
Inverse distance weighting to rapidly generate large simulation datasets.反距离加权法快速生成大型仿真数据集。
J Biomech. 2023 Sep;158:111764. doi: 10.1016/j.jbiomech.2023.111764. Epub 2023 Aug 9.
7
From deep learning to transfer learning for the prediction of skeletal muscle forces.从深度学习到迁移学习预测骨骼肌力。
Med Biol Eng Comput. 2019 May;57(5):1049-1058. doi: 10.1007/s11517-018-1940-y. Epub 2018 Dec 14.

本文引用的文献

5
Machine learning methods to support personalized neuromusculoskeletal modelling.机器学习方法支持个性化神经肌肉骨骼建模。
Biomech Model Mechanobiol. 2020 Aug;19(4):1169-1185. doi: 10.1007/s10237-020-01367-8. Epub 2020 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验