Nüsslein-Volhard C, Roth S
Max-Planck-Institut für Entwicklungsbiologie, Tübingen, FRG.
Ciba Found Symp. 1989;144:37-55; discussion 55-64, 92-8. doi: 10.1002/9780470513798.ch4.
The principles of pattern formation in insects have been studied extensively using classical experimental approaches. In Drosophila, a powerful combination of genetics and transplantation experiments, as well as molecular biology, has helped to elucidate the mechanisms that operate during oogenesis to establish a set of positional cues required for axis determination in the early embryo. These studies suggest the following model: for the anteroposterior axis of the embryo, three groups of maternal genes define three largely independent systems that determine (1) the anterior segmented region of head and thorax, (2) the posterior segmented region of the abdomen, and (3) the terminal non-segmented regions of acron and telson. In contrast, the dorsoventral egg axis appears to require only one system. In each of the four systems, one key gene has an active product that is unequally distributed in the egg. This product provides the spatial signal for the region-specific activation of the transcription of at least one zygotic target gene. The other members within each group serve accessory functions such as determining the correct spatial distribution of the key gene products or controlling their localized activation. The unique expression patterns of the individual zygotic target genes provide a coarse spatial framework which is then refined by the action and interaction of zygotic genes. The notion of three independent systems determining the anteroposterior axis is at variance with a previous model (Meinhardt 1977, Nüsslein-Volhard 1979) of only one gradient, with a high point at the posterior pole, determining a series of states in a concentration-dependent manner. Concentration-dependent determination of more than one quality is likely to occur in the anterior and the dorsoventral system. In contrast, position and polarity within the posterior pattern appear to depend largely on the interaction between gap genes expressed in neighbouring regions rather than on the concentration of the posterior signal.
利用经典实验方法,对昆虫模式形成的原理进行了广泛研究。在果蝇中,遗传学、移植实验以及分子生物学的有力结合,有助于阐明卵子发生过程中起作用的机制,这些机制可建立早期胚胎轴确定所需的一组位置线索。这些研究提出了以下模型:对于胚胎的前后轴,三组母体基因定义了三个基本独立的系统,它们分别决定(1)头部和胸部的前部节段区域,(2)腹部的后部节段区域,以及(3)头部和尾节的末端非节段区域。相比之下,背腹轴似乎只需要一个系统。在这四个系统中的每一个中,一个关键基因都有一个活性产物,该产物在卵子中分布不均。该产物为至少一个合子靶基因转录的区域特异性激活提供空间信号。每组中的其他成员发挥辅助功能,如确定关键基因产物的正确空间分布或控制其局部激活。各个合子靶基因的独特表达模式提供了一个粗略的空间框架,然后通过合子基因的作用和相互作用进行细化。关于三个独立系统决定前后轴的概念与先前的一个模型(Meinhardt 1977,Nüsslein-Volhard 1979)不同,先前模型认为只有一个梯度,后极处有一个高点,以浓度依赖的方式决定一系列状态。在前后系统中,可能会以浓度依赖的方式决定不止一种性质。相比之下,后部模式中的位置和极性似乎很大程度上取决于相邻区域表达的间隙基因之间的相互作用,而不是后部信号的浓度。