Suppr超能文献

动态光照变化期间基于面部光电容积脉搏波描记法的心率估计

Heart rate estimation from facial photoplethysmography during dynamic illuminance changes.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2758-61. doi: 10.1109/EMBC.2015.7318963.

Abstract

Camera-based remote photoplethysmography (rPPG) enables low-cost, non-contact cardiovascular activity monitoring. However, applying rPPG to practical use has some limitations caused from the artifacts by illuminance changes. During watching a video in a dark room, for example, watching a TV at night without illuminance, there is a high correlation between the brightness changes of a video and the illuminance variation on the skin of the viewer's face. In this study, we propose an artifact reduction method in rPPG, which is caused by the variation of the illuminance. The method subtracts the artifacts from the raw facial rPPG signal by applying multi-order curve fitting between the illuminance information from the facial rPPG signal and the brightness information from a video. On average, the results showed that signal-to-noise ratio (SNR) increased from -11.74 to -4.19 dB and from -15.27 to 7.99 dB for low-dynamic-brightness and high-dynamic-brightness video, respectively. In addition, the root-mean-square-error (RMSE) of estimated heart rate decreased from 11.00 to 1.82 bpm and from 9.88 to 4.65 bpm for the videos, respectively.

摘要

基于摄像头的远程光电容积脉搏波描记法(rPPG)能够实现低成本、非接触式的心血管活动监测。然而,将rPPG应用于实际使用存在一些由光照变化引起的伪影所导致的限制。例如,在黑暗房间中观看视频时,晚上在没有光照的情况下看电视,视频的亮度变化与观看者面部皮肤的光照变化之间存在高度相关性。在本研究中,我们提出了一种rPPG中由光照变化引起的伪影减少方法。该方法通过在来自面部rPPG信号的光照信息与来自视频的亮度信息之间应用多阶曲线拟合,从原始面部rPPG信号中减去伪影。结果平均表明,对于低动态亮度和高动态亮度视频,信噪比(SNR)分别从-11.74 dB提高到-4.19 dB和从-15.27 dB提高到7.99 dB。此外,估计心率的均方根误差(RMSE)对于这些视频分别从11.00 bpm降低到1.82 bpm和从9.88 bpm降低到4.65 bpm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验