Suppr超能文献

Fst滤波器:一种用于生物医学多通道数据去噪的灵活时空滤波器。

Fst-Filter: A flexible spatio-temporal filter for biomedical multichannel data denoising.

作者信息

Nuanprasert Somchai, Adachi Yoshiaki, Suzuki Takashi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2767-70. doi: 10.1109/EMBC.2015.7318965.

Abstract

In this paper, we present the noise reduction method for a multichannel measurement system where the true underlying signal is spatially low-rank and contaminated by spatially correlated noise. Our proposed formulation applies generalized singular value decomposition (GSVD) with signal recovery approach to extend the conventional subspace-based methods for performing the spatio-temporal filtering. Without necessarily requiring the noise covariance data in advance, the implemented optimization scheme allows users to choose the denoising function, F(·) flexibly satisfying for different temporal noise characteristics from a variety of existing efficient temporal filters. An effectiveness of proposed method is demonstrated by yielding the better accuracy for the brain source estimation on simulated magnetoencephalography (MEG) experiments than some traditional methods, e.g., principal component analysis (PCA), robust principal component analysis (RPCA) and multivariate wavelet denoising (MWD).

摘要

在本文中,我们提出了一种用于多通道测量系统的降噪方法,该系统中真实的潜在信号在空间上是低秩的,并受到空间相关噪声的污染。我们提出的公式应用广义奇异值分解(GSVD)和信号恢复方法来扩展传统的基于子空间的方法,以执行时空滤波。所实现的优化方案无需事先获取噪声协方差数据,允许用户灵活选择去噪函数F(·),以满足来自各种现有高效时间滤波器的不同时间噪声特性。通过在模拟脑磁图(MEG)实验中进行脑源估计,与一些传统方法(例如主成分分析(PCA)、稳健主成分分析(RPCA)和多变量小波去噪(MWD))相比,所提方法具有更高的准确性,从而证明了该方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验