Jalloul Nahed, Porée Fabienne, Viardot Geoffrey, L'Hostis Philippe, Carrault Guy
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5134-7. doi: 10.1109/EMBC.2015.7319547.
In this paper, we present an activity classification-based algorithm for the automatic detection of Levodopa Induced Dyskinesia in Parkinson's Disease (PD) patients. Two PD patients experiencing motor fluctuations related to chronic Levodopa therapy performed a protocol of simple daily life activities on at least two different occasions. A Random Forest classifier was able to classify the performed activities by the patients with an overall accuracy of 86%. Based on the detected activity, a K Nearest Neighbor classifier detected the presence of dyskinesia with accuracy ranging from 75% to 88%.
在本文中,我们提出了一种基于活动分类的算法,用于自动检测帕金森病(PD)患者的左旋多巴诱导的异动症。两名经历与慢性左旋多巴治疗相关的运动波动的PD患者在至少两个不同场合执行了简单的日常生活活动方案。随机森林分类器能够以86%的总体准确率对患者执行的活动进行分类。基于检测到的活动,K近邻分类器检测异动症的存在,准确率在75%至88%之间。