Tam Wing-kin, So Rosa, Guan Cuntai, Yang Zhi
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5142-5. doi: 10.1109/EMBC.2015.7319549.
Spike detection is often the first step in neural signal processing. It has profound effects on subsequent steps down the signal processing pipeline. Most existing spike detection algorithms require manual setting of detection threshold, which is very inconvenient for long-term neural interface. Furthermore, these algorithms are usually only evaluated using simulated dataset. Few studies are devoted to evaluating how different spike detection algorithms affect decoding performance in brain-computer interface. We have proposed a new spike detection algorithm called "exponential component - power component" (EC-PC) that offers fully automatic unsupervised spike detection. In this study, we compared the performance of a motor decoding task when different spike detection algorithms were used. EC-PC is shown to produce a higher decoding accuracy compared with other existing algorithms. Our results suggest that EC-PC can help improve motor decoding performance of brain-computer interface.
尖峰检测通常是神经信号处理的第一步。它对信号处理流程中的后续步骤有着深远影响。大多数现有的尖峰检测算法需要手动设置检测阈值,这对于长期神经接口来说非常不方便。此外,这些算法通常仅使用模拟数据集进行评估。很少有研究致力于评估不同的尖峰检测算法如何影响脑机接口中的解码性能。我们提出了一种新的尖峰检测算法,称为“指数分量 - 功率分量”(EC-PC),它提供全自动无监督的尖峰检测。在本研究中,我们比较了使用不同尖峰检测算法时运动解码任务的性能。结果表明,与其他现有算法相比,EC-PC能产生更高的解码准确率。我们的结果表明,EC-PC有助于提高脑机接口的运动解码性能。