Suppr超能文献

调制放电率的尖峰检测与神经解码协同设计。

Firing-rate-modulated spike detection and neural decoding co-design.

机构信息

Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

UK Dementia Research Institute, Care Research & Technology Centre at Imperial College London and University of Surrey, London, United Kingdom.

出版信息

J Neural Eng. 2023 May 5;20(3). doi: 10.1088/1741-2552/accece.

Abstract

. Translational efforts on spike-signal-based implantable brain-machine interfaces (BMIs) are increasingly aiming to minimise bandwidth while maintaining decoding performance. Developing these BMIs requires advances in neuroscience and electronic technology, as well as using low-complexity spike detection algorithms and high-performance machine learning models. While some state-of-the-art BMI systems jointly design spike detection algorithms and machine learning models, it remains unclear how the detection performance affects decoding.. We propose the co-design of the neural decoder with an ultra-low complexity spike detection algorithm. The detection algorithm is designed to attain a target firing rate, which the decoder uses to modulate the input features preserving statistical invariance in long term (over several months).. We demonstrate a multiplication-free fixed-point spike detection algorithm with an average detection accuracy of 97% across different noise levels on a synthetic dataset and the lowest hardware complexity among studies we have seen. By co-designing the system to incorporate statistically invariant features, we observe significantly improved long-term stability, with decoding accuracy degrading by less than 10% after 80 days of operation. Our analysis also reveals a nonlinear relationship between spike detection and decoding performance. Increasing the detection sensitivity improves decoding accuracy and long-term stability, which means the activity of more neurons is beneficial despite the detection of more noise. Reducing the spike detection sensitivity still provides acceptable decoding accuracy whilst reducing the bandwidth by at least 30%.. Our findings regarding the relationship between spike detection and decoding performance can provide guidance on setting the threshold for spike detection rather than relying on training or trial-and-error. The trade-off between data bandwidth and decoding performance can be effectively managed using appropriate spike detection settings. We demonstrate improved decoding performance by maintaining statistical invariance of input features. We believe this approach can motivate further research focused on improving decoding performance through the manipulation of data itself (based on a hypothesis) rather than using more complex decoding models.

摘要

基于尖峰信号的植入式脑机接口(BMI)的转化研究越来越倾向于在保持解码性能的同时最小化带宽。开发这些 BMI 需要神经科学和电子技术的进步,以及使用低复杂度的尖峰检测算法和高性能的机器学习模型。虽然一些最先进的 BMI 系统联合设计了尖峰检测算法和机器学习模型,但检测性能如何影响解码仍然不清楚。我们提出了一种超低成本复杂度的尖峰检测算法与神经解码器的联合设计。检测算法旨在达到目标发射率,解码器利用该发射率来调制输入特征,以保持长期(数月)的统计不变性。我们展示了一种无乘法的定点尖峰检测算法,在合成数据集上,在不同噪声水平下的平均检测准确率达到 97%,在我们所看到的研究中具有最低的硬件复杂度。通过联合设计系统来纳入具有统计不变性的特征,我们观察到了显著的长期稳定性改进,在 80 天的运行后,解码精度下降不到 10%。我们的分析还揭示了尖峰检测和解码性能之间的非线性关系。提高检测灵敏度可以提高解码准确性和长期稳定性,这意味着尽管检测到更多的噪声,但更多神经元的活动是有益的。降低尖峰检测灵敏度仍然可以提供可接受的解码准确性,同时将带宽减少至少 30%。我们关于尖峰检测和解码性能之间关系的发现,可以为设置尖峰检测阈值提供指导,而不是依赖于训练或反复试验。使用适当的尖峰检测设置可以有效地管理数据带宽和解码性能之间的权衡。我们通过保持输入特征的统计不变性来提高解码性能。我们相信,这种方法可以激发进一步的研究,通过操纵数据本身(基于假设)来提高解码性能,而不是使用更复杂的解码模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验