Suppr超能文献

神经并行引擎:用于大规模并行神经信号处理的工具包。

Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

机构信息

NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, University of Minnesota Twin Cities, MN, USA.

Department of Biomedical Engineering, University of Minnesota Twin Cities, MN, USA.

出版信息

J Neurosci Methods. 2018 May 1;301:18-33. doi: 10.1016/j.jneumeth.2018.03.004. Epub 2018 Mar 9.

Abstract

BACKGROUND

Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings.

NEW METHOD

In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation.

RESULTS

Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows.

COMPARISON WITH EXISTING METHODS

Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing.

CONCLUSIONS

A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels.

摘要

背景

大规模神经记录提供了关于神经元活动的详细信息,可以帮助揭示大脑的潜在神经机制。然而,当我们试图处理这种记录产生的巨大数据流时,计算负担也非常大。

新方法

在这项研究中,我们报告了神经并行引擎(NPE)的开发,这是一个用于图形处理单元(GPU)上大规模并行神经信号处理的工具包。它提供了神经信号处理中最常用的例程的选择,如尖峰检测和尖峰排序,包括先进的算法,如指数分量功率分量(EC-PC)尖峰检测和二进制追踪尖峰排序。我们还提出了一种通过并行紧凑操作并行检测峰值的新方法。

结果

根据算法的不同,我们的工具包能够提供 5 到 110 倍的加速。提供了一个用户友好的 MATLAB 界面,允许轻松地将工具包集成到现有的工作流程中。

与现有方法的比较

以前的 GPU 神经信号处理的努力仅集中在少数基本算法上,没有很好地优化,并且通常不提供用户友好的编程接口来适应现有的工作流程。非常需要一个用于大规模并行神经信号处理的综合工具包。

结论

创建了一个用于大规模并行神经信号处理的新工具包。它可以为处理多达数千个通道的大规模记录信号提供显著的加速。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验