Nessi Federico, Beretta Elisa, Ferrigno Giancarlo, De Momi Elena
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:5276-9. doi: 10.1109/EMBC.2015.7319582.
During hands-on robotic surgery it is advisable to know how and when to provide the surgeon with different assistance levels with respect to the current performed activity. Gesteme-based on-line classification requires the definition of a complete set of primitives and the observation of large signal percentage. In this work an on-line, gesteme-free activity recognition method is addressed. The algorithm models the guidance forces and the resulting trajectory of the manipulator with 26 low-level components of a Gaussian Mixture Model (GMM). Temporal switching among the components is modeled with a Hidden Markov Model (HMM). Tests are performed in a simplified scenario over a pool of 5 non-surgeon users. Classification accuracy resulted higher than 89% after the observation of a 300 ms-long signal. Future work will address the use of the current detected activity to on-line trigger different strategies to control the manipulator and adapt the level of assistance.
在实际操作的机器人手术过程中,了解如何以及何时根据当前执行的活动为外科医生提供不同级别的协助是很有必要的。基于手势的在线分类需要定义一整套基元并观察大量信号百分比。在这项工作中,提出了一种无手势的在线活动识别方法。该算法用高斯混合模型(GMM)的26个低级组件对操纵器的引导力和由此产生的轨迹进行建模。组件之间的时间切换用隐马尔可夫模型(HMM)进行建模。在一个简化场景中对5名非外科医生用户进行了测试。在观察300毫秒长的信号后,分类准确率高于89%。未来的工作将致力于利用当前检测到的活动在线触发不同策略来控制操纵器并调整协助水平。