Suppr超能文献

人机协作中无手势的情境感知机器人行为自适应

Gesteme-free context-aware adaptation of robot behavior in human-robot cooperation.

作者信息

Nessi Federico, Beretta Elisa, Gatti Cecilia, Ferrigno Giancarlo, De Momi Elena

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, p.zza Leonardo da Vinci, 32, 20133 Milano, Italy.

Department of Electronics, Information and Bioengineering, Politecnico di Milano, p.zza Leonardo da Vinci, 32, 20133 Milano, Italy; Kuka Roboter GmbH, Zugspitzstrasse, 140, 86165 Augsburg, Germany.

出版信息

Artif Intell Med. 2016 Nov;74:32-43. doi: 10.1016/j.artmed.2016.10.001. Epub 2016 Nov 28.

Abstract

BACKGROUND

Cooperative robotics is receiving greater acceptance because the typical advantages provided by manipulators are combined with an intuitive usage. In particular, hands-on robotics may benefit from the adaptation of the assistant behavior with respect to the activity currently performed by the user. A fast and reliable classification of human activities is required, as well as strategies to smoothly modify the control of the manipulator. In this scenario, gesteme-based motion classification is inadequate because it needs the observation of a wide signal percentage and the definition of a rich vocabulary.

OBJECTIVE

In this work, a system able to recognize the user's current activity without a vocabulary of gestemes, and to accordingly adapt the manipulator's dynamic behavior is presented.

METHODS AND MATERIAL

An underlying stochastic model fits variations in the user's guidance forces and the resulting trajectories of the manipulator's end-effector with a set of Gaussian distribution. The high-level switching between these distributions is captured with hidden Markov models. The dynamic of the KUKA light-weight robot, a torque-controlled manipulator, is modified with respect to the classified activity using sigmoidal-shaped functions. The presented system is validated over a pool of 12 näive users in a scenario that addresses surgical targeting tasks on soft tissue. The robot's assistance is adapted in order to obtain a stiff behavior during activities that require critical accuracy constraint, and higher compliance during wide movements. Both the ability to provide the correct classification at each moment (sample accuracy) and the capability of correctly identify the correct sequence of activity (sequence accuracy) were evaluated.

RESULTS

The proposed classifier is fast and accurate in all the experiments conducted (80% sample accuracy after the observation of ∼450ms of signal). Moreover, the ability of recognize the correct sequence of activities, without unwanted transitions is guaranteed (sequence accuracy ∼90% when computed far away from user desired transitions). Finally, the proposed activity-based adaptation of the robot's dynamic does not lead to a not smooth behavior (high smoothness, i.e. normalized jerk score <0.01).

CONCLUSION

The provided system is able to dynamic assist the operator during cooperation in the presented scenario.

摘要

背景

协作机器人技术正越来越被人们所接受,因为机械手所具备的典型优势与直观的使用方式相结合。特别是,实际操作型机器人可能会受益于根据用户当前执行的活动来调整辅助行为。这就需要对人类活动进行快速可靠的分类,以及采用相应策略来平稳地修改机械手的控制。在这种情况下,基于手势的运动分类并不适用,因为它需要观察大量的信号百分比并定义丰富的词汇表。

目的

在这项工作中,我们提出了一种系统,该系统无需手势词汇表就能识别用户当前的活动,并据此调整机械手的动态行为。

方法和材料

一个基础的随机模型通过一组高斯分布来拟合用户引导力的变化以及机械手末端执行器的最终轨迹。这些分布之间的高层切换通过隐马尔可夫模型来捕捉。使用S形函数根据分类活动来修改库卡轻型机器人(一种扭矩控制机械手)的动态特性。所提出的系统在一个涉及软组织手术靶向任务的场景中,对12名普通用户进行了验证。机器人的辅助功能会进行调整,以便在需要严格精度约束的活动中表现出刚性行为,而在大幅度运动中表现出更高的柔顺性。我们评估了在每个时刻提供正确分类的能力(样本准确率)以及正确识别活动正确顺序的能力(序列准确率)。

结果

在所进行的所有实验中,所提出的分类器快速且准确(在观察约450毫秒信号后样本准确率达到80%)。此外,还确保了识别活动正确顺序的能力,且不会出现不必要的转换(当计算远离用户期望转换时,序列准确率约为90%)。最后,所提出的基于活动的机器人动态调整不会导致行为不平稳(高平滑度,即归一化加加速度得分<0.01)。

结论

在所呈现的场景中,所提供的系统能够在协作过程中为操作员提供动态协助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验