Mullan Patrick, Kanzler Christoph M, Lorch Benedikt, Schroeder Lea, Winkler Ludwig, Laich Larissa, Riedel Frederik, Richer Robert, Luckner Christoph, Leutheuser Heike, Eskofier Bjoern M, Pasluosta Cristian
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6114-7. doi: 10.1109/EMBC.2015.7319787.
Photoplethysmography (PPG) is a non-invasive, inexpensive and unobtrusive method to achieve heart rate monitoring during physical exercises. Motion artifacts during exercise challenge the heart rate estimation from wrist-type PPG signals. This paper presents a methodology to overcome these limitation by incorporating acceleration information. The proposed algorithm consisted of four stages: (1) A wavelet based denoising, (2) an acceleration based denoising, (3) a frequency based approach to estimate the heart rate followed by (4) a postprocessing step. Experiments with different movement types such as running and rehabilitation exercises were used for algorithm design and development. Evaluation of our heart rate estimation showed that a mean absolute error 1.96 bpm (beats per minute) with standard deviation of 2.86 bpm and a correlation of 0.98 was achieved with our method. These findings suggest that the proposed methodology is robust to motion artifacts and is therefore applicable for heart rate monitoring during sports and rehabilitation.
光电容积脉搏波描记法(PPG)是一种在体育锻炼期间实现心率监测的非侵入性、低成本且不引人注意的方法。运动过程中的运动伪影对基于手腕式PPG信号的心率估计提出了挑战。本文提出了一种通过纳入加速度信息来克服这些限制的方法。所提出的算法包括四个阶段:(1)基于小波的去噪,(2)基于加速度的去噪,(3)基于频率的心率估计方法,随后是(4)一个后处理步骤。使用不同运动类型(如跑步和康复锻炼)的实验来进行算法设计和开发。我们的心率估计评估表明,我们的方法实现了平均绝对误差1.96次/分钟(每分钟心跳数),标准差为2.86次/分钟,相关性为0.98。这些发现表明,所提出的方法对运动伪影具有鲁棒性,因此适用于运动和康复期间的心率监测。