Suppr超能文献

基于频率估计和陷波滤波的剧烈运动中光电容积脉搏传感器运动伪影去除,以准确计算心率。

Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering.

机构信息

Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China.

Academy of Information Technology and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Sensors (Basel). 2019 Jul 28;19(15):3312. doi: 10.3390/s19153312.

Abstract

With photoplethysmograph (PPG) sensors showing increasing potential in wearable health monitoring, the challenging problem of motion artifact (MA) removal during intensive exercise has become a popular research topic. In this study, a novel method that combines heart rate frequency (HRF) estimation and notch filtering is proposed. The proposed method applies a cascaded adaptive noise cancellation (ANC) based on the least mean squares (LMS)-Newton algorithm for preliminary motion artifacts reduction, and further adopts special heart rate frequency tracking and correction schemes for accurate HRF estimation. Finally, notch filters are employed to restore the PPG signal with estimated HRF based on its quasi-periodicity. On an open source data set that features intensive running exercise, the proposed method achieves a competitive mean average absolute error (AAE) result of 0.92 bpm for HR estimation. The practical experiments are carried out with the PPG evaluation platform developed by ourselves. Under three different intensive motion patterns, a 0.89 bpm average AAE result is achieved with the average correlation coefficient between recovered PPG signal and reference PPG signal reaching 0.86. The experimental results demonstrate the effectiveness of the proposed method for accurate HR estimation and robust MA removal in PPG during intensive exercise.

摘要

利用光电容积脉搏波(PPG)传感器在可穿戴健康监测方面的应用日益广泛,运动伪影(MA)去除问题在剧烈运动监测中成为了一个热门研究课题。在本研究中,提出了一种结合心率频率(HRF)估计和陷波滤波的新方法。该方法采用基于最小均方(LMS)-牛顿算法的级联自适应噪声消除(ANC)进行初步运动伪影去除,并进一步采用特殊的心率频率跟踪和校正方案进行准确的 HRF 估计。最后,采用陷波滤波器根据估计的 HRF 恢复 PPG 信号,利用其准周期性。在一个具有剧烈跑步运动的开源数据集上,所提出的方法在 HR 估计方面取得了具有竞争力的平均绝对误差(AAE)结果,为 0.92 bpm。实际实验是在我们自己开发的 PPG 评估平台上进行的。在三种不同的剧烈运动模式下,恢复的 PPG 信号与参考 PPG 信号之间的平均相关系数达到 0.86,平均平均绝对误差(AAE)结果为 0.89 bpm。实验结果表明,该方法在剧烈运动中 PPG 的准确 HR 估计和稳健 MA 去除方面具有有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验