Ahmadi Amirhosein Khas, Moradi Parsa, Malihi Mahan, Karimi Sajjad, Shamsollahi Mohammad B
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6166-9. doi: 10.1109/EMBC.2015.7319800.
Heart rate monitoring using wrist-type using photoplethysmographic (PPG) signals during subjects' intensive exercises is a challenging problem, since signals are strongly affected by motion artifacts caused by unexpected movements. This paper presents a method that uses both time and frequency characteristics of signals; using sparse signal reconstruction for high-resolution spectrum estimation. Experimental results on type data sets recorded from 12 subjects during fast running at peak speed of 15 km/hour. The results have a performance with the average absolute error being 1.80 beat per minute.
在受试者进行高强度运动期间,使用腕式光电容积脉搏波描记(PPG)信号进行心率监测是一个具有挑战性的问题,因为信号会受到意外运动引起的运动伪影的强烈影响。本文提出了一种利用信号的时间和频率特征的方法;使用稀疏信号重构进行高分辨率频谱估计。对12名受试者在以15公里/小时的峰值速度快速跑步期间记录的类型数据集进行了实验。结果表明,平均绝对误差为每分钟1.80次心跳,具有较好的性能。